The effectiveness of local spatial dependence in shaping the population density distribution is investigated. Individual location preferences are modelled by considering the status-related features of a given spatial unit and its neighbours as well as local random spatial dependence. The novelty is framing such a dependence through conditionally autoregressive (CAR) census random effects that are added to a spatially lagged explanatory variable X (SLX) setting. The results not only confirm that controlling for the spatial dimension is relevant but also indicate that local spatial dependence warrants consideration when determining the population distribution of recent decades. In this respect, the framework turns out to be useful for the analysis of microdata in which individual relationships (in a same spatial unit) enforce local spatial dependence.

Population distribution over time: modelling local spatial dependence with a CAR process

Epifani, Ilenia;
2020-01-01

Abstract

The effectiveness of local spatial dependence in shaping the population density distribution is investigated. Individual location preferences are modelled by considering the status-related features of a given spatial unit and its neighbours as well as local random spatial dependence. The novelty is framing such a dependence through conditionally autoregressive (CAR) census random effects that are added to a spatially lagged explanatory variable X (SLX) setting. The results not only confirm that controlling for the spatial dimension is relevant but also indicate that local spatial dependence warrants consideration when determining the population distribution of recent decades. In this respect, the framework turns out to be useful for the analysis of microdata in which individual relationships (in a same spatial unit) enforce local spatial dependence.
2020
hierarchical Bayesian spatio-temporal model, population density distribution, spatial conditionally autoregressive (CAR) model, spatial interaction
File in questo prodotto:
File Dimensione Formato  
11311-1128937_Epifani.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.65 MB
Formato Adobe PDF
3.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1128937
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact