This work presents a strategy for the design of a hydrogen supply chain network for minimum daily supply costs, minimum mitigation costs of CO2, and maximum network safety. The aim is to identify the best hydrogen infrastructure pathways while taking into account local factors such as the location of the hydrogen supply and demand, and distribution between the hydrogen production location and hydrogen demand points. The proposed model is a mixed integer linear program that is solved with AIMMS. The model is solved as a multi-criterion decision making problem, where three objectives (costs, safety, and environmental impact) are balanced. A three dimensional Pareto front is created using the epsilon constraint method. Utopia point analysis is used to make trade-off decisions in the Pareto front. Compared to the current internal combustion vehicle fuel with an average cost of 0.0645 $ per km, the hydrogen cost, of 0.0762 $ per km, proofs the potential for a hydrogen economy. Implementation of decentralized hydrogen production plant based on water electrolysis may compete with coal-based dominant technology.

Balancing costs, safety and CO2 emissions in the design of hydrogen supply chains

Manca D.;
2019-01-01

Abstract

This work presents a strategy for the design of a hydrogen supply chain network for minimum daily supply costs, minimum mitigation costs of CO2, and maximum network safety. The aim is to identify the best hydrogen infrastructure pathways while taking into account local factors such as the location of the hydrogen supply and demand, and distribution between the hydrogen production location and hydrogen demand points. The proposed model is a mixed integer linear program that is solved with AIMMS. The model is solved as a multi-criterion decision making problem, where three objectives (costs, safety, and environmental impact) are balanced. A three dimensional Pareto front is created using the epsilon constraint method. Utopia point analysis is used to make trade-off decisions in the Pareto front. Compared to the current internal combustion vehicle fuel with an average cost of 0.0645 $ per km, the hydrogen cost, of 0.0762 $ per km, proofs the potential for a hydrogen economy. Implementation of decentralized hydrogen production plant based on water electrolysis may compete with coal-based dominant technology.
2019
Fuel infrastructures; Hydrogen supply chain design; Mixed integer linear programming; Multi-objective optimization; Water electrolysis technology
File in questo prodotto:
File Dimensione Formato  
253 Balancing costs safety and CO2 emissions in the design of hydrogen supply chains.pdf

Accesso riservato

: Publisher’s version
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1128831
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 21
social impact