High-temperature copper oxide superconductors consist of stacked CuO2 planes, with electronic band structures and magnetic excitations that are primarily two-dimensional1,2, but with superconducting coherence that is three-dimensional. This dichotomy highlights the importance of out-of-plane charge dynamics, which has been found to be incoherent in the normal state3,4 within the limited range of momenta accessible by optics. Here we use resonant inelastic X-ray scattering to explore the charge dynamics across all three dimensions of the Brillouin zone. Polarization analysis of recently discovered collective excitations (modes) in electron-doped copper oxides5–7 reveals their charge origin, that is, without mixing with magnetic components5–7. The excitations disperse along both the in-plane and out-of-plane directions, revealing its three-dimensional nature. The periodicity of the out-of-plane dispersion corresponds to the distance between neighbouring CuO2 planes rather than to the crystallographic c-axis lattice constant, suggesting that the interplane Coulomb interaction is responsible for the coherent out-of-plane charge dynamics. The observed properties are hallmarks of the long-sought ‘acoustic plasmon’, which is a branch of distinct charge collective modes predicted for layered systems8–12 and argued to play a substantial part in mediating high-temperature superconductivity10–12.
Three-dimensional collective charge excitations in electron-doped copper oxide superconductors
Fumagalli R.;Braicovich L.;Ghiringhelli G.;
2018-01-01
Abstract
High-temperature copper oxide superconductors consist of stacked CuO2 planes, with electronic band structures and magnetic excitations that are primarily two-dimensional1,2, but with superconducting coherence that is three-dimensional. This dichotomy highlights the importance of out-of-plane charge dynamics, which has been found to be incoherent in the normal state3,4 within the limited range of momenta accessible by optics. Here we use resonant inelastic X-ray scattering to explore the charge dynamics across all three dimensions of the Brillouin zone. Polarization analysis of recently discovered collective excitations (modes) in electron-doped copper oxides5–7 reveals their charge origin, that is, without mixing with magnetic components5–7. The excitations disperse along both the in-plane and out-of-plane directions, revealing its three-dimensional nature. The periodicity of the out-of-plane dispersion corresponds to the distance between neighbouring CuO2 planes rather than to the crystallographic c-axis lattice constant, suggesting that the interplane Coulomb interaction is responsible for the coherent out-of-plane charge dynamics. The observed properties are hallmarks of the long-sought ‘acoustic plasmon’, which is a branch of distinct charge collective modes predicted for layered systems8–12 and argued to play a substantial part in mediating high-temperature superconductivity10–12.File | Dimensione | Formato | |
---|---|---|---|
Nature.563.374 (Hepting WSL RIXS of 3D plasmons in LCCO).pdf
Accesso riservato
:
Publisher’s version
Dimensione
2.39 MB
Formato
Adobe PDF
|
2.39 MB | Adobe PDF | Visualizza/Apri |
11311-1128325_Ghiringhelli.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.76 MB
Formato
Adobe PDF
|
1.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.