Despite the recent growth of interest in molten salt reactor technology and the crucial role which heat transfer plays in the design of power reactors, specific studies on the design of heat exchangers for the Molten Salt Fast Reactor have not yet been performed. In this work we deliver a preliminary but quantitative analysis of the intermediate heat exchangers, based on reference design data from the SAMOFAR H2020-Euratom project. Two different promising reference technologies are selected for study thanks to their compactness features, the Printed Circuit and the Helical Coil heat exchangers. We present preliminary design results for each technology, based on simplified design tools. Results highlight the limiting effects of the compactness constraints imposed on the fuel salt inventory and the allowed size. Large pressure drops on both flow sides are to be expected, with negative consequences on pumping power and natural circulation capabilities. The small size required for the flow channels also represents possible fabrication issues and safety concerns regarding channel blockage.

Preliminary analysis and design of the heat exchangers for the Molten Salt Fast Reactor

Di Ronco A.;Cammi A.;Lorenzi S.
2020-01-01

Abstract

Despite the recent growth of interest in molten salt reactor technology and the crucial role which heat transfer plays in the design of power reactors, specific studies on the design of heat exchangers for the Molten Salt Fast Reactor have not yet been performed. In this work we deliver a preliminary but quantitative analysis of the intermediate heat exchangers, based on reference design data from the SAMOFAR H2020-Euratom project. Two different promising reference technologies are selected for study thanks to their compactness features, the Printed Circuit and the Helical Coil heat exchangers. We present preliminary design results for each technology, based on simplified design tools. Results highlight the limiting effects of the compactness constraints imposed on the fuel salt inventory and the allowed size. Large pressure drops on both flow sides are to be expected, with negative consequences on pumping power and natural circulation capabilities. The small size required for the flow channels also represents possible fabrication issues and safety concerns regarding channel blockage.
2020
Molten salt reactor, MSFR, Heat exchanger, Printed circuit heat exchanger, Gen-IV
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1738573319300658-main.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1128321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 14
social impact