Waste-to-energy (WtE) is one of the leading technologies for municipal solid waste (MSW) treatment in Europe. According to Eurostat data, in 2015, 27 % of MSW was utilized in WtE plants, which represents more than 80 million tons per year. Therefore, the European annual production of incineration bottom ash (IBA) is about 20 million tons, as it is about 25 wt% of input MSW [5]. In the European List of Waste, IBA is listed as mirror entry (i.e. waste materials which should be classified as either non-hazardous or hazardous, depending on its hazardous properties and/or content of hazardous substances) under codes 19 01 11 and 19 01 12. Recent trends indicate that WtE allows, apart from utilization of the energy content of waste, also the recovery of various valuable components. Hence, WtE can be included in the key technologies that can put the circular economy concept into practice. Secondary raw materials in the case of WtE are solid residues, especially IBA, as it is a secondary source, particularly of ferrous metals (Fe) and non-ferrous metals (NF) and glass. Moreover, the residual mineral fraction can be used for various applications in the construction industry, i.e. as aggregates substitute for bound or unbound applications, in cement manufacturing or, as indicated by recent research, also in more sophisticated applications, e.g. for ceramics production. Recovery of these metals can also cause huge greenhouse gas savings. Alone in Europe, metal recovery from IBA reduces greenhouse gas emissions by approximately 3.2 million tonnes of CO2 equivalent [2]. A significant development in technologies for metals or glass recovery during the last decade can be noted. These technologies have become common part of WtE plants all over the Europe.

Resource Recovery from Incineration Bottom Ash: Basics, Concepts, Principles

L. Biganzoli;M. Grosso;
2018-01-01

Abstract

Waste-to-energy (WtE) is one of the leading technologies for municipal solid waste (MSW) treatment in Europe. According to Eurostat data, in 2015, 27 % of MSW was utilized in WtE plants, which represents more than 80 million tons per year. Therefore, the European annual production of incineration bottom ash (IBA) is about 20 million tons, as it is about 25 wt% of input MSW [5]. In the European List of Waste, IBA is listed as mirror entry (i.e. waste materials which should be classified as either non-hazardous or hazardous, depending on its hazardous properties and/or content of hazardous substances) under codes 19 01 11 and 19 01 12. Recent trends indicate that WtE allows, apart from utilization of the energy content of waste, also the recovery of various valuable components. Hence, WtE can be included in the key technologies that can put the circular economy concept into practice. Secondary raw materials in the case of WtE are solid residues, especially IBA, as it is a secondary source, particularly of ferrous metals (Fe) and non-ferrous metals (NF) and glass. Moreover, the residual mineral fraction can be used for various applications in the construction industry, i.e. as aggregates substitute for bound or unbound applications, in cement manufacturing or, as indicated by recent research, also in more sophisticated applications, e.g. for ceramics production. Recovery of these metals can also cause huge greenhouse gas savings. Alone in Europe, metal recovery from IBA reduces greenhouse gas emissions by approximately 3.2 million tonnes of CO2 equivalent [2]. A significant development in technologies for metals or glass recovery during the last decade can be noted. These technologies have become common part of WtE plants all over the Europe.
2018
Removal, Treatment and Utilisation of Waste Incineration Bottom Ash
978-3-944310-44-2
File in questo prodotto:
File Dimensione Formato  
removal_treatment_and_utilisation.pdf

Accesso riservato

Descrizione: Contributo completo
: Publisher’s version
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1126861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact