d-Phenylalanine derivatives are valuable chiral building blocks for a wide range of pharmaceuticals. Here, we developed stereoinversion and deracemization biocatalytic cascades to synthesize d-phenylalanine derivatives that contain electron-donating or -withdrawing substituents of various sizes and at different positions on the phenyl ring with a high enantiomeric excess (90 to >99 % ee) from commercially available racemic mixtures or l-amino acids. These whole-cell systems couple Proteus mirabilis l-amino acid deaminase with an engineered aminotransferase that displays native-like activity towards d-phenylalanine, which we generated from Bacillus sp. YM-1 d-amino acid aminotransferase. Our cascades are applicable to preparative-scale synthesis and do not require cofactor-regeneration systems or chemical reducing agents.

Engineered Aminotransferase for the Production of d-Phenylalanine Derivatives Using Biocatalytic Cascades

Parmeggiani F.;
2018-01-01

Abstract

d-Phenylalanine derivatives are valuable chiral building blocks for a wide range of pharmaceuticals. Here, we developed stereoinversion and deracemization biocatalytic cascades to synthesize d-phenylalanine derivatives that contain electron-donating or -withdrawing substituents of various sizes and at different positions on the phenyl ring with a high enantiomeric excess (90 to >99 % ee) from commercially available racemic mixtures or l-amino acids. These whole-cell systems couple Proteus mirabilis l-amino acid deaminase with an engineered aminotransferase that displays native-like activity towards d-phenylalanine, which we generated from Bacillus sp. YM-1 d-amino acid aminotransferase. Our cascades are applicable to preparative-scale synthesis and do not require cofactor-regeneration systems or chemical reducing agents.
2018
amino acids; biocatalysis; biotransformations; enzymes; synthesis design
File in questo prodotto:
File Dimensione Formato  
DAAT engineering REVISED FINAL.pdf

Open Access dal 07/01/2021

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 567.92 kB
Formato Adobe PDF
567.92 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1126528
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
social impact