In this work we present the response of a new large volume 4H Silicon Carbide (SiC) detector to 14 MeV neutrons. The device has an active thickness of 100μm (obtained by epitaxial growing) and an active area of 25 mm2. Tests were conducted at the ENEA-Frascati Neutron Generator facility by using 14.1 MeV neutrons. The SiC detector performance was compared to that of Single-Crystal Diamond (SCD) detectors. The SiC response function was successfully measured and revealed a very complex structure due to the presence in the detector of both Silicon and Carbon atoms. Nevertheless, the flexibility in the SiC manufacturing and the new achievements in terms of relatively large areas (up 1x1 cm2) and a wide range of thicknesses makes them an interesting alternative to diamond detectors in environments where limited space and high neutron fluxes are an issue, i.e. modern neutron cameras or in-vessel tokamak measurements for the new generation fusion machines such as ITER. The absence of instabilities during neutron irradiation and the capability to withstand high neutron fluences and to follow the neutron yield suggest a straightforward use of these detectors as a neutron diagnostics.

New thick silicon carbide detectors: Response to 14 MeV neutrons and comparison with single-crystal diamonds

Fazzi A.;
2019

Abstract

In this work we present the response of a new large volume 4H Silicon Carbide (SiC) detector to 14 MeV neutrons. The device has an active thickness of 100μm (obtained by epitaxial growing) and an active area of 25 mm2. Tests were conducted at the ENEA-Frascati Neutron Generator facility by using 14.1 MeV neutrons. The SiC detector performance was compared to that of Single-Crystal Diamond (SCD) detectors. The SiC response function was successfully measured and revealed a very complex structure due to the presence in the detector of both Silicon and Carbon atoms. Nevertheless, the flexibility in the SiC manufacturing and the new achievements in terms of relatively large areas (up 1x1 cm2) and a wide range of thicknesses makes them an interesting alternative to diamond detectors in environments where limited space and high neutron fluxes are an issue, i.e. modern neutron cameras or in-vessel tokamak measurements for the new generation fusion machines such as ITER. The absence of instabilities during neutron irradiation and the capability to withstand high neutron fluences and to follow the neutron yield suggest a straightforward use of these detectors as a neutron diagnostics.
File in questo prodotto:
File Dimensione Formato  
SiC_vs_diamonds_finale_Lines.pdf

accesso aperto

Descrizione: Articolo principale
: Pre-Print (o Pre-Refereeing)
Dimensione 814.31 kB
Formato Adobe PDF
814.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1126160
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact