This work presents the fabrication and experimental evaluation of instrumentation designed to enable higher spatial resolution neutron radiography for those performing research at neutron scattering facilities. Herein, we describe a proof-of-concept array of microstructured silicate fibers with6Li doped cores that shows progress towards a design for μm resolution neutron radiography. The multicore fiber was fabricated by drawing stacked unit elements of Guardian Glass (Nucsafe Inc., Oak Ridge, TN, USA), a6Li scintillating core glass, and a silicate cladding glass. These structured fibers function as an array of sub-10-μm waveguides for scintillation light. Measurements have shown a significantly increased integrated charge distribution in response to neutrons, and the spatial resolution of the radiographs is described by edge response and line spread functions of 48±4μm and 59±8μm, respectively.

Fabrication and experimental evaluation of microstructured6Li silicate fiber arrays for high spatial resolution neutron imaging

Lousteau J.;
2020-01-01

Abstract

This work presents the fabrication and experimental evaluation of instrumentation designed to enable higher spatial resolution neutron radiography for those performing research at neutron scattering facilities. Herein, we describe a proof-of-concept array of microstructured silicate fibers with6Li doped cores that shows progress towards a design for μm resolution neutron radiography. The multicore fiber was fabricated by drawing stacked unit elements of Guardian Glass (Nucsafe Inc., Oak Ridge, TN, USA), a6Li scintillating core glass, and a silicate cladding glass. These structured fibers function as an array of sub-10-μm waveguides for scintillation light. Measurements have shown a significantly increased integrated charge distribution in response to neutrons, and the spatial resolution of the radiographs is described by edge response and line spread functions of 48±4μm and 59±8μm, respectively.
2020
High spatial resolution; Lithium glass; Multicore fiber; Neutron radiography; Optical waveguides; Particle tracking
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1126070
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact