The aim of this note is to survey recent results contained in Nguyen H-M, Squassina M. [On anisotropic Sobolev spaces. Commun Contemp Math, to appear. DOI:10.1142/S0219199718500177]; Nguyen H-M, Pinamonti A, Squassina M, et al. [New characterizations of magnetic Sobolev spaces. Adv Nonlinear Anal. 2018;7(2):227–245]; Pinamonti A, Squassina M, Vecchi E. [Magnetic BV functions and the Bourgain-Brezis-Mironescu formula. Adv Calc Var, to appear. DOI:10.1515/acv-2017-0019]; Pinamonti A, Squassina M, Vecchi E. [The Maz'ya-Shaposhnikova limit in the magnetic setting. J Math Anal Appl. 2017;449:1152–1159] and Squassina M, Volzone B. [Bourgain-Brezis-Mironescu formula for magnetic operators. C R Math Acad Sci Paris. 2016;354:825–831], where the authors extended to the magnetic setting several characterizations of Sobolev and BV functions.

Some characterizations of magnetic Sobolev spaces

Vecchi E.
2020

Abstract

The aim of this note is to survey recent results contained in Nguyen H-M, Squassina M. [On anisotropic Sobolev spaces. Commun Contemp Math, to appear. DOI:10.1142/S0219199718500177]; Nguyen H-M, Pinamonti A, Squassina M, et al. [New characterizations of magnetic Sobolev spaces. Adv Nonlinear Anal. 2018;7(2):227–245]; Pinamonti A, Squassina M, Vecchi E. [Magnetic BV functions and the Bourgain-Brezis-Mironescu formula. Adv Calc Var, to appear. DOI:10.1515/acv-2017-0019]; Pinamonti A, Squassina M, Vecchi E. [The Maz'ya-Shaposhnikova limit in the magnetic setting. J Math Anal Appl. 2017;449:1152–1159] and Squassina M, Volzone B. [Bourgain-Brezis-Mironescu formula for magnetic operators. C R Math Acad Sci Paris. 2016;354:825–831], where the authors extended to the magnetic setting several characterizations of Sobolev and BV functions.
Magnetic Sobolev spaces; new characterization; nonlocal functionals
File in questo prodotto:
File Dimensione Formato  
Nguyen_Pinamonti_Squassina_Vecchi.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 365.1 kB
Formato Adobe PDF
365.1 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1125527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact