Embedded devices running on ambient energy perform computations intermittently, depending upon energy availability. System support ensures forward progress of programs through state checkpointing in non-volatile memory. Checkpointing is, however, expensive in energy and adds to execution times. To reduce this overhead, we present DICE, a system design that efficiently achieves differential checkpointing in intermittent computing. Distinctive traits of DICE are its software-only nature and its ability to only operate in volatile main memory to determine differentials. DICE works with arbitrary programs using automatic code instrumentation, thus requiring no programmer intervention, and can be integrated with both reactive (Hibernus) or proactive (MementOS, HarvOS) checkpointing systems. By reducing the cost of checkpoints, performance markedly improves. For example, using DICE, Hibernus requires one order of magnitude shorter time to complete a fixed workload in real-world settings.

Efficient intermittent computing with differential checkpointing

Bhatti N. A.;Mottola L.
2019-01-01

Abstract

Embedded devices running on ambient energy perform computations intermittently, depending upon energy availability. System support ensures forward progress of programs through state checkpointing in non-volatile memory. Checkpointing is, however, expensive in energy and adds to execution times. To reduce this overhead, we present DICE, a system design that efficiently achieves differential checkpointing in intermittent computing. Distinctive traits of DICE are its software-only nature and its ability to only operate in volatile main memory to determine differentials. DICE works with arbitrary programs using automatic code instrumentation, thus requiring no programmer intervention, and can be integrated with both reactive (Hibernus) or proactive (MementOS, HarvOS) checkpointing systems. By reducing the cost of checkpoints, performance markedly improves. For example, using DICE, Hibernus requires one order of magnitude shorter time to complete a fixed workload in real-world settings.
2019
Proceedings of the ACM SIGPLAN Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES)
9781450367240
Differential checkpointing; Intermittent computing; Transiently powered computers
File in questo prodotto:
File Dimensione Formato  
ahmed19efficient.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1125028
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? ND
social impact