Porphyrins are an extremely valuable class of molecules engaged in a variety of roles spanning from biology to optoelectronics. Manipulation of the chemical and physical properties of the inner cavity of porphyrins has been recognized as crucial for the exploitation of these systems in organic devices, particularly when porphyrins self-organize at the interface with a flat-on orientation of the macrocycle. Such an orientation has been mostly observed on metallic surfaces. Unfortunately, the physical-chemical properties of the molecules result in being largely perturbed due to the molecule-metal interaction. In addition, conducting substrates are unsuited to exploit electrically driven devices based on organic layers. To overcome these issues, we performed a topology-based analysis of insulating organic single crystal structures to identify a surface which (i) ensures easy exfoliation through mechanical methods, (ii) ensures epitaxial match with an overlayer of close-packed flat-on porphyrin molecules, and (iii) displays chirality. The outcome of this work is represented by a unique crystal of mixed 2,5-diketopiperazine and fumaric acid in a 1:1 ratio. We demonstrate that the (110) surface of this crystal fulfills the aforementioned requirements and, thanks to its peculiar subnanometric corrugations, allows one to grow uniaxially aligned monolayers of flat-on porphyrin molecules assembled through van der Waals interactions.

Uniaxial Alignment of a Monolayer of Flat-on Free-Base Porphyrins on an Exfoliable Insulating Substrate

Yivlialin R.;Bussetti G.
2019-01-01

Abstract

Porphyrins are an extremely valuable class of molecules engaged in a variety of roles spanning from biology to optoelectronics. Manipulation of the chemical and physical properties of the inner cavity of porphyrins has been recognized as crucial for the exploitation of these systems in organic devices, particularly when porphyrins self-organize at the interface with a flat-on orientation of the macrocycle. Such an orientation has been mostly observed on metallic surfaces. Unfortunately, the physical-chemical properties of the molecules result in being largely perturbed due to the molecule-metal interaction. In addition, conducting substrates are unsuited to exploit electrically driven devices based on organic layers. To overcome these issues, we performed a topology-based analysis of insulating organic single crystal structures to identify a surface which (i) ensures easy exfoliation through mechanical methods, (ii) ensures epitaxial match with an overlayer of close-packed flat-on porphyrin molecules, and (iii) displays chirality. The outcome of this work is represented by a unique crystal of mixed 2,5-diketopiperazine and fumaric acid in a 1:1 ratio. We demonstrate that the (110) surface of this crystal fulfills the aforementioned requirements and, thanks to its peculiar subnanometric corrugations, allows one to grow uniaxially aligned monolayers of flat-on porphyrin molecules assembled through van der Waals interactions.
2019
atomic force microscopy; Mixed crystal; organic epitaxy; tautomerism; thin films; wetting layer
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1124672
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact