Purpose. The paper continues the authors’ studies devoted to transients in three-phase five-limb transformers. The main purpose of the work is to propose a method of evaluating model parameters, which cover transformer operations in saturation. This purpose is achieved by using the concept of the model reversibility. Methodology. The method of obtaining model parameters employs magnetic transformer model and is based on the idea of the model reversibility. The solution is found by equating input reluctances seen from the terminals of the innermost and outermost windings to the reluctances of the corresponding windings on air. Findings. The modeling of GIC events represented in the paper is the most accurate ever obtained for three-phase, five-leg transformers. The model is validated by close agreement of the predicted values and waveforms of the phase currents and reactive power with those measured in tests performed on two 400 MVA transformers connected back-to-back and to a 400 kV power network. The validity of the model was verified at 75 and 200 A dc currents in the transformer neutral. It is shown that the model is a reliable tool in evaluating inrush currents. Originality. The originality and advantage of the method proposed is its ability to determine the model parameters without fitting to experimental data obtained in regimes with highly saturated core. The method ensures the reversibility of the three-winding transformer model that is its correct behavior regardless of which winding is energized. Practical value. The practical value and significance of the paper is caused by the fact that the model proposed is a simple and reliable tool for power system studies. As a practically important example, time domain response of transformer subjected to geomagnetically induced currents (GIC) is analyzed and compared with results of a comprehensive field experiment.

Topological Reversible Model of Three-Phase Five-Limb Transformer

Arturi, C. M.;
2018-01-01

Abstract

Purpose. The paper continues the authors’ studies devoted to transients in three-phase five-limb transformers. The main purpose of the work is to propose a method of evaluating model parameters, which cover transformer operations in saturation. This purpose is achieved by using the concept of the model reversibility. Methodology. The method of obtaining model parameters employs magnetic transformer model and is based on the idea of the model reversibility. The solution is found by equating input reluctances seen from the terminals of the innermost and outermost windings to the reluctances of the corresponding windings on air. Findings. The modeling of GIC events represented in the paper is the most accurate ever obtained for three-phase, five-leg transformers. The model is validated by close agreement of the predicted values and waveforms of the phase currents and reactive power with those measured in tests performed on two 400 MVA transformers connected back-to-back and to a 400 kV power network. The validity of the model was verified at 75 and 200 A dc currents in the transformer neutral. It is shown that the model is a reliable tool in evaluating inrush currents. Originality. The originality and advantage of the method proposed is its ability to determine the model parameters without fitting to experimental data obtained in regimes with highly saturated core. The method ensures the reversibility of the three-winding transformer model that is its correct behavior regardless of which winding is energized. Practical value. The practical value and significance of the paper is caused by the fact that the model proposed is a simple and reliable tool for power system studies. As a practically important example, time domain response of transformer subjected to geomagnetically induced currents (GIC) is analyzed and compared with results of a comprehensive field experiment.
2018
ELETTRICI
File in questo prodotto:
File Dimensione Formato  
Topological Reversible Model.pdf

accesso aperto

Descrizione: Articolo Principale
: Publisher’s version
Dimensione 4.77 MB
Formato Adobe PDF
4.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1124204
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact