Ion beam analysis techniques are among the most powerful tools for advanced materials characterization. Despite their growing relevance in a widening number of fields, most ion beam analysis facilities still rely on the oldest accelerator technologies, with severe limitations in terms of portability and flexibility. In this work we thoroughly address the potential of superintense laser-driven proton sources for this application. We develop a complete analytical and numerical framework suitable to describe laser-driven ion beam analysis, exemplifying the approach for Proton Induced X-ray/Gamma-ray emission, a technique of widespread interest. This allows us to propose a realistic design for a compact, versatile ion beam analysis facility based on this novel concept. These results can pave the way for ground-breaking developments in the field of hadron-based advanced materials characterization.

Superintense Laser-driven Ion Beam Analysis

Passoni M.;Mirani F.
2019-01-01

Abstract

Ion beam analysis techniques are among the most powerful tools for advanced materials characterization. Despite their growing relevance in a widening number of fields, most ion beam analysis facilities still rely on the oldest accelerator technologies, with severe limitations in terms of portability and flexibility. In this work we thoroughly address the potential of superintense laser-driven proton sources for this application. We develop a complete analytical and numerical framework suitable to describe laser-driven ion beam analysis, exemplifying the approach for Proton Induced X-ray/Gamma-ray emission, a technique of widespread interest. This allows us to propose a realistic design for a compact, versatile ion beam analysis facility based on this novel concept. These results can pave the way for ground-breaking developments in the field of hadron-based advanced materials characterization.
2019
File in questo prodotto:
File Dimensione Formato  
s41598-019-45425-3 (1).pdf

accesso aperto

Descrizione: Open Access Article
: Publisher’s version
Dimensione 3.45 MB
Formato Adobe PDF
3.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1123977
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 23
social impact