In this work, the performances of two recently developed finite-rate dynamic scale similarity (SS) sub-grid scale (SGS) combustion models (named DB and DC) for non-premixed turbulent combustion are a priori assessed based on three Direct Numerical Simulation (DNS) databases. These numerical experiments feature temporally evolving syngas jet flames with different Reynolds (Re) numbers (2510, 4487 and 9079), experiencing a high level of local extinction. For comparison purposes, the predicting capability of these models is compared with three classical non-dynamic SS models, namely the scale similarity resolved reaction rate model (SSRRRM or A), the scale similarity filtered reaction rate model (SSFRRM or B), and a SS model derived by the “test filtering” approach (C), as well as an existing dynamic version of SSRRRM (DA). Improvements in the prediction of heat release rates using a new dynamic model DC are observed in high Re flame case. By decreasing Re, dynamic procedures produce results roughly similar to their non-dynamic counterparts. In the lowest Re, the dynamic methods lead to higher errors.

New Dynamic Scale Similarity Based Finite-Rate Combustion Models for LES and a priori DNS Assessment in Non-premixed Jet Flames with High Level of Local Extinction

Shamooni A.;Cuoci A.;Faravelli T.;
2019-01-01

Abstract

In this work, the performances of two recently developed finite-rate dynamic scale similarity (SS) sub-grid scale (SGS) combustion models (named DB and DC) for non-premixed turbulent combustion are a priori assessed based on three Direct Numerical Simulation (DNS) databases. These numerical experiments feature temporally evolving syngas jet flames with different Reynolds (Re) numbers (2510, 4487 and 9079), experiencing a high level of local extinction. For comparison purposes, the predicting capability of these models is compared with three classical non-dynamic SS models, namely the scale similarity resolved reaction rate model (SSRRRM or A), the scale similarity filtered reaction rate model (SSFRRM or B), and a SS model derived by the “test filtering” approach (C), as well as an existing dynamic version of SSRRRM (DA). Improvements in the prediction of heat release rates using a new dynamic model DC are observed in high Re flame case. By decreasing Re, dynamic procedures produce results roughly similar to their non-dynamic counterparts. In the lowest Re, the dynamic methods lead to higher errors.
2019
A priori DNS analysis; Dynamic scale similarity combustion model; Extinction re-ignition; Finite-rate SGS combustion model; LES; Non-premixed jet flame
File in questo prodotto:
File Dimensione Formato  
Shamooni2019_Article_NewDynamicScaleSimilarityBased.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1123493
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact