Miniaturized on-chip spectrometers covering a wide band of the mid-infrared spectrum have an immense potential for multi-target detection in high-impact applications, such as chemical sensing or environmental monitoring. Specifically, multi-aperture spatial heterodyne Fouriertransform spectrometers (SHFTS) provide high throughput and improved tolerance against fabrication errors, compared to conventional counterparts. Still, state-of-the-art implementations have only shown single-polarization operation in narrow bandwidths within the near and short infrared. Here, we demonstrate the first, to the best of our knowledge, dual-polarization ultra-wideband SHFTS working beyond 5 μm wavelength. We exploit the unique flexibility in material engineering of the graded-index germanium-rich silicon-germanium (Ge-rich SiGe) photonic platform to implement a SHFTS that can be operated in an unprecedented range of 800 cm-1, showing experimental resolution better than 15 cm-1 for both orthogonal polarizations and free spectral range of 132 cm-1, in the wavelength range between 5 and 8.5 μm.

Integrated broadband dual-polarization Ge-rich SiGe mid-infrared Fourier-transform spectrometer

Frigerio J.;Ballabio A.;Isella G.;
2018-01-01

Abstract

Miniaturized on-chip spectrometers covering a wide band of the mid-infrared spectrum have an immense potential for multi-target detection in high-impact applications, such as chemical sensing or environmental monitoring. Specifically, multi-aperture spatial heterodyne Fouriertransform spectrometers (SHFTS) provide high throughput and improved tolerance against fabrication errors, compared to conventional counterparts. Still, state-of-the-art implementations have only shown single-polarization operation in narrow bandwidths within the near and short infrared. Here, we demonstrate the first, to the best of our knowledge, dual-polarization ultra-wideband SHFTS working beyond 5 μm wavelength. We exploit the unique flexibility in material engineering of the graded-index germanium-rich silicon-germanium (Ge-rich SiGe) photonic platform to implement a SHFTS that can be operated in an unprecedented range of 800 cm-1, showing experimental resolution better than 15 cm-1 for both orthogonal polarizations and free spectral range of 132 cm-1, in the wavelength range between 5 and 8.5 μm.
2018
File in questo prodotto:
File Dimensione Formato  
11311-1123135_Frigerio.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 810.93 kB
Formato Adobe PDF
810.93 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1123135
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 25
social impact