Despite the recent introduction of heavily doped semiconductors for mid-infrared plasmonics, it still remains an open issue whether such materials can compete with noble metals. A whole set of figures of merit are employed to thoroughly assess the use of heavily doped Ge on Si as a mid-infrared plasmonic material and benchmark it against standard noble metals such as Au. A full-wave electrodynamics framework is used to model and design high-performance, silicon-foundry compatible mid-infrared plasmonic sensors based on experimental material data reaching plasma wavelengths down to λp ∼ 3.1 μm. It is finally shown that Ge sensors can provide signal enhancements for vibrational spectroscopy above the 3 orders of magnitude, thus, representing a promising alternative to noble metals, leveraging the full compatibility with the silicon foundry microfabrication processes.

Benchmarking the Use of Heavily Doped Ge for Plasmonics and Sensing in the Mid-Infrared

Pellegrini G.;Frigerio J.;Isella G.;Biagioni P.
2018-01-01

Abstract

Despite the recent introduction of heavily doped semiconductors for mid-infrared plasmonics, it still remains an open issue whether such materials can compete with noble metals. A whole set of figures of merit are employed to thoroughly assess the use of heavily doped Ge on Si as a mid-infrared plasmonic material and benchmark it against standard noble metals such as Au. A full-wave electrodynamics framework is used to model and design high-performance, silicon-foundry compatible mid-infrared plasmonic sensors based on experimental material data reaching plasma wavelengths down to λp ∼ 3.1 μm. It is finally shown that Ge sensors can provide signal enhancements for vibrational spectroscopy above the 3 orders of magnitude, thus, representing a promising alternative to noble metals, leveraging the full compatibility with the silicon foundry microfabrication processes.
2018
germanium; heavy-doping; mid-infrared; plasmonics; sensing
File in questo prodotto:
File Dimensione Formato  
11311-1123134_Biagioni.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.01 MB
Formato Adobe PDF
3.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1123134
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 29
social impact