This paper presents a preliminary investigation on the workflow that allows to replicate object by using 3D laser scanner and a desktop fused filament fabrication 3D printer. Pitfalls and limitations of those technologies will be pointed out in order to find the bottleneck of the workflow, paying specific attention to what concerns the digital workflow from the acquisition to the generation of the g-code. The findings and conclusions are drawn from a case study that has been carried out using the minimum amount of human intervention, especially during the digital postprocessing of the data. The objects under investigation is a broken car door handle. Firstly, it has been digitalized using a 3D laser scanner properly calibrated and set. The accuracy, precision and resolution of the measurement tool have been recorded and the as-is acquired data has been checked against topological errors. The as-is acquired model has been compared with the original geometry. The 3d polygonal mesh has been prepared for being printed: the material, machine and process parameters have been chosen. A simulation of the deposition process to estimate warps and deviation from the nominal geometry was carried out. Finally, the object has been additively manufactured using a desktop Fused Filament Fabrication machine: the printed object has been again compared with the original geometry.

Replicas fabrication by laser scanner and additive manufacturing: a preliminary investigation

M. Rossoni;G. Colombo
2019-01-01

Abstract

This paper presents a preliminary investigation on the workflow that allows to replicate object by using 3D laser scanner and a desktop fused filament fabrication 3D printer. Pitfalls and limitations of those technologies will be pointed out in order to find the bottleneck of the workflow, paying specific attention to what concerns the digital workflow from the acquisition to the generation of the g-code. The findings and conclusions are drawn from a case study that has been carried out using the minimum amount of human intervention, especially during the digital postprocessing of the data. The objects under investigation is a broken car door handle. Firstly, it has been digitalized using a 3D laser scanner properly calibrated and set. The accuracy, precision and resolution of the measurement tool have been recorded and the as-is acquired data has been checked against topological errors. The as-is acquired model has been compared with the original geometry. The 3d polygonal mesh has been prepared for being printed: the material, machine and process parameters have been chosen. A simulation of the deposition process to estimate warps and deviation from the nominal geometry was carried out. Finally, the object has been additively manufactured using a desktop Fused Filament Fabrication machine: the printed object has been again compared with the original geometry.
2019
Volume 13: Design, System and Complexity
978-0-7918-8351-8
File in questo prodotto:
File Dimensione Formato  
IMECE2019-11497.pdf

Accesso riservato

Dimensione 675.04 kB
Formato Adobe PDF
675.04 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1123004
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact