A detailed study of compression tests on lattice structures obtained by selective laser melting with AlSi7Mg powder is presented here. Two different cell topologies have been investigated: the body-centered cubic cell and the face centered cubic cell or 3D Warren structure. Specimens of different volume have been printed in order to investigate the effect of the size on the mechanical response and properties of the structure. Particular attention has been paid to the definition of the test procedure and the analysis of the data to properly characterize the microlattice. No remarkable effect of the specimen size has been found in terms of elastic modulus and yielding stress. On the contrary, the maximum stress and the failure mechanism are influenced by the size of the specimen; for the body-centered cubic cell, a detailed analysis has been performed through digital image correlation of the failure. Test results have been compared with the results of an elasto-plastic simulation performed on a single cell of lattice with periodic boundary conditions, showing a good prediction in terms of elastic modulus and yielding stress.
Influence of specimen size on the mechanical properties of microlattices obtained by selective laser melting
GAVAZZONI, MATTEO;Boniotti L.;Foletti S.
2021-01-01
Abstract
A detailed study of compression tests on lattice structures obtained by selective laser melting with AlSi7Mg powder is presented here. Two different cell topologies have been investigated: the body-centered cubic cell and the face centered cubic cell or 3D Warren structure. Specimens of different volume have been printed in order to investigate the effect of the size on the mechanical response and properties of the structure. Particular attention has been paid to the definition of the test procedure and the analysis of the data to properly characterize the microlattice. No remarkable effect of the specimen size has been found in terms of elastic modulus and yielding stress. On the contrary, the maximum stress and the failure mechanism are influenced by the size of the specimen; for the body-centered cubic cell, a detailed analysis has been performed through digital image correlation of the failure. Test results have been compared with the results of an elasto-plastic simulation performed on a single cell of lattice with periodic boundary conditions, showing a good prediction in terms of elastic modulus and yielding stress.File | Dimensione | Formato | |
---|---|---|---|
0954406219869741-2.pdf
Accesso riservato
:
Publisher’s version
Dimensione
2.17 MB
Formato
Adobe PDF
|
2.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.