In the last two decades, the three-beam pump–push–probe (PPP) technique has become a well-established tool for investigating the multidimensional configurational space of a molecule, as it permits disclosure of precious information about the multiple and often complex deactivation pathways of the excited molecule. From the spectroscopic point of view, such a tool has revealed details about the efficiency of charge pair generation and conformational relaxation in π-conjugated molecules and macromolecules. In addition, PPP is effectively utilized for modulating the gain signal in conjugated materials by taking advantage of the spectral overlap between stimulated emission and charge absorption in those systems. However, the relatively low stability of conjugated polymers under intense photoexcitation is a crucial limitation for their real employment in plastic optical fibers (POFs) and for signal control applications. Herein, the role of PPP for achieving ultrafast all-optical switching in π-conjugated systems is highlighted. Furthermore, new experimental data on optical switching of a newly synthesized nanographene molecule, namely dibenzo[hi,st]ovalene (DBOV), is reported. The superior environmental and photostability of DBOV and, in general, of graphene nanostructures can represent a great advantage for their effective applications in POFs and information and communications technology.

Pump–Push–Probe for Ultrafast All-Optical Switching: The Case of a Nanographene Molecule

Paterno G. M.;Moretti L.;Cerullo G.;Scotognella F.;Lanzani G.
2019

Abstract

In the last two decades, the three-beam pump–push–probe (PPP) technique has become a well-established tool for investigating the multidimensional configurational space of a molecule, as it permits disclosure of precious information about the multiple and often complex deactivation pathways of the excited molecule. From the spectroscopic point of view, such a tool has revealed details about the efficiency of charge pair generation and conformational relaxation in π-conjugated molecules and macromolecules. In addition, PPP is effectively utilized for modulating the gain signal in conjugated materials by taking advantage of the spectral overlap between stimulated emission and charge absorption in those systems. However, the relatively low stability of conjugated polymers under intense photoexcitation is a crucial limitation for their real employment in plastic optical fibers (POFs) and for signal control applications. Herein, the role of PPP for achieving ultrafast all-optical switching in π-conjugated systems is highlighted. Furthermore, new experimental data on optical switching of a newly synthesized nanographene molecule, namely dibenzo[hi,st]ovalene (DBOV), is reported. The superior environmental and photostability of DBOV and, in general, of graphene nanostructures can represent a great advantage for their effective applications in POFs and information and communications technology.
conjugated polymers; nanographene; pump–push–probe; ultrafast optical switching; ultrafast spectroscopy
File in questo prodotto:
File Dimensione Formato  
11311-1122438_Scotognella.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1122438
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 20
social impact