In this paper, we present the results of time-lapse electrical resistivity tomography (ERT) monitoring of rainfall-triggered shallow landslides reproduced on a laboratory-scale physical model. The main objective of our experiments was to monitor rainwater infiltration through landslide body in order to improve our understanding of the precursors of failure. Time-domain reflectometry (TDR) data were also acquired to obtain the volumetric water content. Knowing the porosity, water saturation was calculated from the volumetric water content and we could calibrate Archie's equation to calculate water saturation maps from inverted resistivity values. Time-lapse ERT images proved to be effective in monitoring the hydrogeological conditions of the slope as well as in detecting the development of fracture zones before collapse. We performed eight laboratory tests and the results show that the landslide body becomes unstable at zones where the water saturation exceeds 45%. It was also observed that instability could occur at the boundaries between areas with different water saturations. Our study shows that time-lapse ERT technique can be employed to monitor the hydrogeological conditions of landslide bodies and the monitoring strategy could be extended to field-scale applications in areas prone to the development of shallow landslides.

Geoelectrical characterization and monitoring of slopes on a rainfall-triggered landslide simulator

Hojat A.;Ivanov V. I.;Longoni L.;Papini M.;Scaioni M.;Tresoldi G.;Zanzi L.
2019

Abstract

In this paper, we present the results of time-lapse electrical resistivity tomography (ERT) monitoring of rainfall-triggered shallow landslides reproduced on a laboratory-scale physical model. The main objective of our experiments was to monitor rainwater infiltration through landslide body in order to improve our understanding of the precursors of failure. Time-domain reflectometry (TDR) data were also acquired to obtain the volumetric water content. Knowing the porosity, water saturation was calculated from the volumetric water content and we could calibrate Archie's equation to calculate water saturation maps from inverted resistivity values. Time-lapse ERT images proved to be effective in monitoring the hydrogeological conditions of the slope as well as in detecting the development of fracture zones before collapse. We performed eight laboratory tests and the results show that the landslide body becomes unstable at zones where the water saturation exceeds 45%. It was also observed that instability could occur at the boundaries between areas with different water saturations. Our study shows that time-lapse ERT technique can be employed to monitor the hydrogeological conditions of landslide bodies and the monitoring strategy could be extended to field-scale applications in areas prone to the development of shallow landslides.
Geoelectrical characterization; Landslide simulator; Rainfall-triggered landslides; Time-lapse ERT monitoring; Water saturation
File in questo prodotto:
File Dimensione Formato  
JAG19.pdf

accesso aperto

Descrizione: Articolo
: Publisher’s version
Dimensione 5.66 MB
Formato Adobe PDF
5.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1122427
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 28
social impact