Tracking changes in a photonic integrated circuit is an essential task for many applications, such sensing or telecommunication systems. In particular, locking of laser to a microring resonator and tracking resonance shifts over time with high accuracy can improve several applications such as sensing and biosensing. In this work, we present a novel system to lock a laser to a silicon photonics microring resonance and track the changes in wavelength over time. An electronic digital feedback loop balances the power at outputs of the microring (at the through and the drop ports) by tuning finely the wavelength of the input laser. The silicon photonics chip is equipped with integrated photodiodes at each port of the microring. The low noise of photodiodes, together with the resolution of the tuning of the laser, allows achieving locking with less than 7 femtometers as residual noise at 1550 nm. The digital implementation of the feedback loop permits to reach bandwidth up to 1 kHz. Demonstration of the locking has been made with several different microring resonators, with Q-factor varying from 5000 to 60000.

System for tracking femtometer resonance shifts of silicon photonics microring resonator by locking tunable laser

Peserico N.;Baudot C.;Fincato A.;Melloni A.
2018-01-01

Abstract

Tracking changes in a photonic integrated circuit is an essential task for many applications, such sensing or telecommunication systems. In particular, locking of laser to a microring resonator and tracking resonance shifts over time with high accuracy can improve several applications such as sensing and biosensing. In this work, we present a novel system to lock a laser to a silicon photonics microring resonance and track the changes in wavelength over time. An electronic digital feedback loop balances the power at outputs of the microring (at the through and the drop ports) by tuning finely the wavelength of the input laser. The silicon photonics chip is equipped with integrated photodiodes at each port of the microring. The low noise of photodiodes, together with the resolution of the tuning of the laser, allows achieving locking with less than 7 femtometers as residual noise at 1550 nm. The digital implementation of the feedback loop permits to reach bandwidth up to 1 kHz. Demonstration of the locking has been made with several different microring resonators, with Q-factor varying from 5000 to 60000.
2018
Proceedings of SPIE - The International Society for Optical Engineering
9781510615557
9781510615564
Feedback; Locking; Microring resonator; Silicon photonics
File in questo prodotto:
File Dimensione Formato  
ProcSPIE_STM_FTH_POLIMI (002).pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.96 MB
Formato Adobe PDF
3.96 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1121845
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact