Benzaldehyde is an aromatic aldehyde commonly considered in bio-oil surrogate formulation, and an important intermediate in the oxidation of other aromatic reference fuels such as toluene. However, its oxidation has never been previously investigated experimentally and no product formation profiles were reported in the very limited pyrolysis studies available in the literature. In this study, the gas-phase oxidation of benzaldehyde was investigated in a jet-stirred reactor. 48 species were detected using gas chromatography, mainly CO, CO2 and phenol. The important formation of CO and phenol indicates a rapid formation of phenyl radicals. This was confirmed by a kinetic analysis performed using the current version of the CRECK kinetic model, in which the reactions of phenyl radicals and oxygenated aromatic compounds have been updated.

Experimental and modeling study of benzaldehyde oxidation

Pelucchi M.;Pratali Maffei L.;Stagni A.;Faravelli T.;
2020-01-01

Abstract

Benzaldehyde is an aromatic aldehyde commonly considered in bio-oil surrogate formulation, and an important intermediate in the oxidation of other aromatic reference fuels such as toluene. However, its oxidation has never been previously investigated experimentally and no product formation profiles were reported in the very limited pyrolysis studies available in the literature. In this study, the gas-phase oxidation of benzaldehyde was investigated in a jet-stirred reactor. 48 species were detected using gas chromatography, mainly CO, CO2 and phenol. The important formation of CO and phenol indicates a rapid formation of phenyl radicals. This was confirmed by a kinetic analysis performed using the current version of the CRECK kinetic model, in which the reactions of phenyl radicals and oxygenated aromatic compounds have been updated.
2020
Benzaldehyde; Jet-stirred reactor; Oxidation; Phenyl radical
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0010218019304389-main.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 3 MB
Formato Adobe PDF
3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1121095
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 19
social impact