In this Chapter, possibility theory is briefly presented as a framework to deal with electromagnetic compatibility (EMC) problems characterized by incomplete or lack of knowledge (i.e., epistemic uncertainty) on the variability of some of the involved parameters. Accordingly, such parameters are modeled by fuzzy variables (characterized by possibility distributions), that, in real-case scenarios, usually coexist with random variables (characterized by probability distributions). This is the case of typical test setups for EMC verification, such as the radiated susceptibility case study here presented, where the uncertainty of output quantities strongly depends on some input parameters, whose probability distribution functions are unknown. To overcome this limitation, a hybrid approach is presented to propagate the uncertainty within the model, still retaining the possibilistic and probabilistic nature of the two sets of involved parameters. Two methods to aggregate the obtained random-fuzzy sets are presented and compared versus the results obtained by running fully-probabilistic Monte Carlo (MC) simulations, where all uncertain parameters were assigned known probability distributions.

Hybrid Possibilistic-Probabilistic Approach to Uncertainty Quantification in Electromagnetic Compatibility Models

Toscani, Nicola;Grassi, Flavia;Spadacini, Giordano;Pignari, Sergio A.
2019-01-01

Abstract

In this Chapter, possibility theory is briefly presented as a framework to deal with electromagnetic compatibility (EMC) problems characterized by incomplete or lack of knowledge (i.e., epistemic uncertainty) on the variability of some of the involved parameters. Accordingly, such parameters are modeled by fuzzy variables (characterized by possibility distributions), that, in real-case scenarios, usually coexist with random variables (characterized by probability distributions). This is the case of typical test setups for EMC verification, such as the radiated susceptibility case study here presented, where the uncertainty of output quantities strongly depends on some input parameters, whose probability distribution functions are unknown. To overcome this limitation, a hybrid approach is presented to propagate the uncertainty within the model, still retaining the possibilistic and probabilistic nature of the two sets of involved parameters. Two methods to aggregate the obtained random-fuzzy sets are presented and compared versus the results obtained by running fully-probabilistic Monte Carlo (MC) simulations, where all uncertain parameters were assigned known probability distributions.
2019
Uncertainty Modeling for Engineering Applications
978-3-030-04869-3
978-3-030-04870-9
ELETTRICI
File in questo prodotto:
File Dimensione Formato  
Springer book chapter _ reprint.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 6.73 MB
Formato Adobe PDF
6.73 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1120710
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact