Energy efficiency is an effective way to produce energy reducing the impact of fossil fuels in the energy sector. A promising solution for residential application consists of producing domestic hot water and space heating using Solar-Assisted Heat Pump. This work analyzes the performance of a Solar-Assisted Heat Pump with an innovative Integrated Dual-Source Evaporator connected to Photovoltaic/Thermal modules. The concept is firstly validated in laboratory where the Solar-Assisted Heat Pump is operated in real environmental conditions. Then, a numerical model is developed in Matlab® to identify the optimal design of the Integrated Dual-Source Evaporator. Numerical results show that the performance of the system are significantly affected by the solar irradiance and in a wide operating range the photovoltaic production overcomes the Heat Pump consumptions. Compared to a standard Air-Source Heat Pump, the proposed concept shows up to 14% higher Coefficient of Performance

Experimental and analytical study of an innovative integrated dual-source evaporator for solar-assisted heat pumps

Simonetti R.;Molinaroli L.;Manzolini G.
2019-01-01

Abstract

Energy efficiency is an effective way to produce energy reducing the impact of fossil fuels in the energy sector. A promising solution for residential application consists of producing domestic hot water and space heating using Solar-Assisted Heat Pump. This work analyzes the performance of a Solar-Assisted Heat Pump with an innovative Integrated Dual-Source Evaporator connected to Photovoltaic/Thermal modules. The concept is firstly validated in laboratory where the Solar-Assisted Heat Pump is operated in real environmental conditions. Then, a numerical model is developed in Matlab® to identify the optimal design of the Integrated Dual-Source Evaporator. Numerical results show that the performance of the system are significantly affected by the solar irradiance and in a wide operating range the photovoltaic production overcomes the Heat Pump consumptions. Compared to a standard Air-Source Heat Pump, the proposed concept shows up to 14% higher Coefficient of Performance
2019
DSHP system; Experimental analysis; Optimal design; Performance analysis; PV/T collector
File in questo prodotto:
File Dimensione Formato  
Experimental and analytical study of an innovative integrated dual-source evaporator for solar-assisted heat pumps.pdf

Open Access dal 02/01/2022

Descrizione: Articolo principale
: Publisher’s version
Dimensione 7.19 MB
Formato Adobe PDF
7.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1119027
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 19
social impact