This paper proposes a statistical model to evaluate the impact of the signal backscattered by low Earth orbiting (LEO) synthetic aperture radar (SAR) and received by GEO-stationary orbiting SAR. The model properly accounts for the bistatic backscatter, the number of LEO-SAR satellites and their duty cycles. The presence of many sun-synchronous, dawn-dusk satellites creates a 24 h periodic pattern in interference that should be considered in the acquisition plan of future geostationary SAR. The model, implemented by a numerical simulator, allows also the prediction of performance in future scenarios of many LEO-SAR. Examples and evaluations are made here for X band.
LEO to GEO-SAR interferences: Modelling and performance evaluation
Leanza A.;MANZONI, MARCO;Monti-Guarnieri A.;
2019-01-01
Abstract
This paper proposes a statistical model to evaluate the impact of the signal backscattered by low Earth orbiting (LEO) synthetic aperture radar (SAR) and received by GEO-stationary orbiting SAR. The model properly accounts for the bistatic backscatter, the number of LEO-SAR satellites and their duty cycles. The presence of many sun-synchronous, dawn-dusk satellites creates a 24 h periodic pattern in interference that should be considered in the acquisition plan of future geostationary SAR. The model, implemented by a numerical simulator, allows also the prediction of performance in future scenarios of many LEO-SAR. Examples and evaluations are made here for X band.File | Dimensione | Formato | |
---|---|---|---|
remotesensing-11-01720.pdf
accesso aperto
:
Publisher’s version
Dimensione
4.55 MB
Formato
Adobe PDF
|
4.55 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.