In this work, we exploit the capability of virtual element methods in accommodating approximation spaces featuring high-order continuity to numerically approximate differential problems of the form $(-Delta)^p u =f, pgeq1$. More specifically, we develop and analyze the conforming virtual element method for the numerical approximation of polyharmonic boundary value problems, and prove an abstract result that states the convergence of the method in suitable norms.
The conforming virtual element method for polyharmonic problems
Antonietti P. F.;Verani M.
2020-01-01
Abstract
In this work, we exploit the capability of virtual element methods in accommodating approximation spaces featuring high-order continuity to numerically approximate differential problems of the form $(-Delta)^p u =f, pgeq1$. More specifically, we develop and analyze the conforming virtual element method for the numerical approximation of polyharmonic boundary value problems, and prove an abstract result that states the convergence of the method in suitable norms.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2020_Antonietti_Manzini_Verani_CAMWA.pdf
Accesso riservato
Descrizione: principale
:
Publisher’s version
Dimensione
545.31 kB
Formato
Adobe PDF
|
545.31 kB | Adobe PDF | Visualizza/Apri |
2020_Antonietti_Manzini_Verani_CMWA.pdf
Open Access dal 01/03/2022
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
414.04 kB
Formato
Adobe PDF
|
414.04 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.