In this work, we exploit the capability of virtual element methods in accommodating approximation spaces featuring high-order continuity to numerically approximate differential problems of the form $(-Delta)^p u =f, pgeq1$. More specifically, we develop and analyze the conforming virtual element method for the numerical approximation of polyharmonic boundary value problems, and prove an abstract result that states the convergence of the method in suitable norms.

The conforming virtual element method for polyharmonic problems

Antonietti P. F.;Verani M.
2020-01-01

Abstract

In this work, we exploit the capability of virtual element methods in accommodating approximation spaces featuring high-order continuity to numerically approximate differential problems of the form $(-Delta)^p u =f, pgeq1$. More specifically, we develop and analyze the conforming virtual element method for the numerical approximation of polyharmonic boundary value problems, and prove an abstract result that states the convergence of the method in suitable norms.
2020
High-order methods; Polyharmonic problem; Polytopal mesh; Virtual Element method
File in questo prodotto:
File Dimensione Formato  
2020_Antonietti_Manzini_Verani_CAMWA.pdf

Accesso riservato

Descrizione: principale
: Publisher’s version
Dimensione 545.31 kB
Formato Adobe PDF
545.31 kB Adobe PDF   Visualizza/Apri
2020_Antonietti_Manzini_Verani_CMWA.pdf

Open Access dal 01/03/2022

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 414.04 kB
Formato Adobe PDF
414.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1118777
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 26
social impact