High Throughput Satellite systems are expected to reach the milestone of terabit/s capacity in few years through the exploitation of Extremely High Frequencies (EHF), in particular Q/V-bands and W-band, in the feeder link. In this respect, the H2020 QV-LIFT project, kicked-off in November 2016, aims at filling crucial gaps in the ground segment technology required by future Q/V-band HTS systems. One of the most challenging objectives of QV-LIFT team is develop and test a smart gateway management system (SGMS) operating in the Q/V-band. The SGMS will implement fade mitigation techniques able to counteract the detrimental propagation impairments across the feeder link. This paper reports the optimization and simulation activities that have been performed to design SMGS control logic, with a focus on the atmospheric channel predictor and switching decision algorithm. The channel is fully characterized by synthetic time series of rain attenuation generated by a Multi-site Time-series Synthesizer (MTS).

Optimization of Q/V-band Smart Gateway Switching in the framework of Q/V-Lift Project

Riva, C;Luini, L;
2019-01-01

Abstract

High Throughput Satellite systems are expected to reach the milestone of terabit/s capacity in few years through the exploitation of Extremely High Frequencies (EHF), in particular Q/V-bands and W-band, in the feeder link. In this respect, the H2020 QV-LIFT project, kicked-off in November 2016, aims at filling crucial gaps in the ground segment technology required by future Q/V-band HTS systems. One of the most challenging objectives of QV-LIFT team is develop and test a smart gateway management system (SGMS) operating in the Q/V-band. The SGMS will implement fade mitigation techniques able to counteract the detrimental propagation impairments across the feeder link. This paper reports the optimization and simulation activities that have been performed to design SMGS control logic, with a focus on the atmospheric channel predictor and switching decision algorithm. The channel is fully characterized by synthetic time series of rain attenuation generated by a Multi-site Time-series Synthesizer (MTS).
2019
IEEE AEROSPACE CONFERENCE
File in questo prodotto:
File Dimensione Formato  
Aeroconf_QV-Lift_SG_Submitted.pdf

accesso aperto

Descrizione: Contributo completo
: Pre-Print (o Pre-Refereeing)
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1118626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact