A thin and narrow rectangular plate having the two short edges hinged and the two long edges free is considered. A nonlinear nonlocal evolution equation describing the deformation of the plate is introduced: well-posedness and existence of periodic solutions are proved. The natural phase space is a particular second order Sobolev space that can be orthogonally split into two subspaces containing, respectively, the longitudinal and the torsional movements of the plate. Sufficient conditions for the stability of periodic solutions and of solutions having only a longitudinal component are given. A stability analysis of the so-called prevailing mode is also performed. Some numerical experiments show that instabilities may occur. This plate can be seen as a simplified and qualitative model for the deck of a suspension bridge, which does not take into account the complex interactions between all the components of a real bridge.

Periodic Solutions and Torsional Instability in a Nonlinear Nonlocal Plate Equation

Bonheure, Denis;Gazzola, Filippo;Dos Santos, Ederson Moreira
2019-01-01

Abstract

A thin and narrow rectangular plate having the two short edges hinged and the two long edges free is considered. A nonlinear nonlocal evolution equation describing the deformation of the plate is introduced: well-posedness and existence of periodic solutions are proved. The natural phase space is a particular second order Sobolev space that can be orthogonally split into two subspaces containing, respectively, the longitudinal and the torsional movements of the plate. Sufficient conditions for the stability of periodic solutions and of solutions having only a longitudinal component are given. A stability analysis of the so-called prevailing mode is also performed. Some numerical experiments show that instabilities may occur. This plate can be seen as a simplified and qualitative model for the deck of a suspension bridge, which does not take into account the complex interactions between all the components of a real bridge.
nonlinear nonlocal plate equation; periodic solutions; torsional stability
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1118550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 12
social impact