We explored a versatile enzyme nanoencapsulation process based on the synthesis of silica gel nanoparticles, decorated with a dense hydrophilic poly(glycerol monomethacrylate) (PGMMA) shell for biological and therapeutic applications. These hybrid enzyme-SiO2-polymer nanoparticles were obtained through an aqueous solgel process, followed by the adsorption of cationic macroinitiators by electrostatic complexation. Surface-initiated Atom Transfer Radical Polymerisation (ATRP) was applied to obtain a dense hydrophilic (protein repellent) PGMMA layer of tunable size, under conditions which are compatible with the nanoencapsulation of horseradish peroxidase. The sol-gel synthetic procedure, the composition and molecular weight of the macroinitiators, the polymer adsorption and purification methods, and the final ATRP conditions, were optimised to control the properties of these nanoparticles, in terms of particle size, Z-potential, PGMMA decoration, while preserving enzymatic activity.
Tuning the properties of hybrid SiO2/ poly(glycerol monomethacrylate) nanoparticles for enzyme nanoencapsulation
Cellesi F.;
2019-01-01
Abstract
We explored a versatile enzyme nanoencapsulation process based on the synthesis of silica gel nanoparticles, decorated with a dense hydrophilic poly(glycerol monomethacrylate) (PGMMA) shell for biological and therapeutic applications. These hybrid enzyme-SiO2-polymer nanoparticles were obtained through an aqueous solgel process, followed by the adsorption of cationic macroinitiators by electrostatic complexation. Surface-initiated Atom Transfer Radical Polymerisation (ATRP) was applied to obtain a dense hydrophilic (protein repellent) PGMMA layer of tunable size, under conditions which are compatible with the nanoencapsulation of horseradish peroxidase. The sol-gel synthetic procedure, the composition and molecular weight of the macroinitiators, the polymer adsorption and purification methods, and the final ATRP conditions, were optimised to control the properties of these nanoparticles, in terms of particle size, Z-potential, PGMMA decoration, while preserving enzymatic activity.File | Dimensione | Formato | |
---|---|---|---|
DeLeonardis2019_published.pdf
Accesso riservato
:
Publisher’s version
Dimensione
5.46 MB
Formato
Adobe PDF
|
5.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.