The Spatial Markov Model (SMM) is an upscaled model with a strong track record in predicting upscaled behavior of conservative solute transport across hydrologic systems. Here we propose an SMM that can account for reactive linear adsorption and desorption processes and test it on a simple benchmark problem: flow and transport through an idealized periodic wavy channel. The methodology is built using trajectories that are obtained from a single high resolution random walk simulation of conservative transport across one periodic element. Our approach encodes information about where a particle starts at the inlet, where it leaves at the outlet, how long it takes to cross the domain and one additional piece of information, the number of times a particle strikes the boundary, with the objective of predicting large scale transport with arbitrary linear adsorption and desorption rates. Our benchmark problem demonstrates that predictions made with our proposed SMM agree favorably with results from direct numerical simulations, which resolve the full transport problem.

A spatial Markov model for upscaling transport of adsorbing-desorbing solutes

Porta G.;
2019-01-01

Abstract

The Spatial Markov Model (SMM) is an upscaled model with a strong track record in predicting upscaled behavior of conservative solute transport across hydrologic systems. Here we propose an SMM that can account for reactive linear adsorption and desorption processes and test it on a simple benchmark problem: flow and transport through an idealized periodic wavy channel. The methodology is built using trajectories that are obtained from a single high resolution random walk simulation of conservative transport across one periodic element. Our approach encodes information about where a particle starts at the inlet, where it leaves at the outlet, how long it takes to cross the domain and one additional piece of information, the number of times a particle strikes the boundary, with the objective of predicting large scale transport with arbitrary linear adsorption and desorption rates. Our benchmark problem demonstrates that predictions made with our proposed SMM agree favorably with results from direct numerical simulations, which resolve the full transport problem.
Sorption desorption; Spatial Markov model; Upscaling
File in questo prodotto:
File Dimensione Formato  
SMM_Sorption_Desorption.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 763.89 kB
Formato Adobe PDF
763.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1115455
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact