In a simulation experiment we studied the effects of cognitive, emotional, sensorimotor, and mixed stressors on driver arousal and performance with respect to (wrt) baseline. In a sample of n = 59 drivers, balanced in terms of age and gender, we found that all stressors incurred significant increases in mean sympathetic arousal accompanied by significant increases in mean absolute steering. The latter, translated to significantly larger range of lane departures only in the case of sensorimotor and mixed stressors, indicating more dangerous driving wrt baseline. In the case of cognitive or emotional stressors, often a smaller range of lane departures was observed, indicating safer driving wrt baseline. This paradox suggests an effective coping mechanism at work, which compensates erroneous reactions precipitated by cognitive or emotional conflict. This mechanisms' grip slips, however, when the feedback loop is intermittently severed by sensorimotor distractions. Interestingly, mixed stressors did not affect crash rates in startling events, suggesting that the coping mechanism's compensation time scale is above the range of neurophysiological latency.
Dissecting Driver Behaviors under Cognitive, Emotional, Sensorimotor, and Mixed Stressors
Tsiamyrtzis P.
2016-01-01
Abstract
In a simulation experiment we studied the effects of cognitive, emotional, sensorimotor, and mixed stressors on driver arousal and performance with respect to (wrt) baseline. In a sample of n = 59 drivers, balanced in terms of age and gender, we found that all stressors incurred significant increases in mean sympathetic arousal accompanied by significant increases in mean absolute steering. The latter, translated to significantly larger range of lane departures only in the case of sensorimotor and mixed stressors, indicating more dangerous driving wrt baseline. In the case of cognitive or emotional stressors, often a smaller range of lane departures was observed, indicating safer driving wrt baseline. This paradox suggests an effective coping mechanism at work, which compensates erroneous reactions precipitated by cognitive or emotional conflict. This mechanisms' grip slips, however, when the feedback loop is intermittently severed by sensorimotor distractions. Interestingly, mixed stressors did not affect crash rates in startling events, suggesting that the coping mechanism's compensation time scale is above the range of neurophysiological latency.File | Dimensione | Formato | |
---|---|---|---|
Dissecting-Driver-Behaviors-under-Cognitive-Emotional-Sensorimotor-and-Mixed-StressorsScientific-Reports.pdf
accesso aperto
:
Publisher’s version
Dimensione
9.03 MB
Formato
Adobe PDF
|
9.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.