We consider the QC-LDPC code-based cryptosystems named LEDAcrypt, which are under consideration by NIST for the second round of the post-quantum cryptography standardization initiative. LEDAcrypt is the result of the merger of the key encapsulation mechanism LEDAkem and the public-key cryptosystem LEDApkc, which were submitted to the first round of the same competition. We provide a detailed quantification of the quantum and classical computational efforts needed to foil the cryptographic guarantees of these systems. To this end, we take into account the best known attacks that can be mounted against them employing both classical and quantum computers, and compare their computational complexities with the ones required to break AES, coherently with the NIST requirements. Assuming the original LEDAkem and LEDApkc parameters as a reference, we introduce an algorithmic optimization procedure to design new sets of parameters for LEDAcrypt. These novel sets match the security levels in the NIST call and make the C reference implementation of the systems exhibit significantly improved figures of merit, in terms of both running times and key sizes. As a further contribution, we develop a theoretical characterization of the decryption failure rate (DFR) of LEDAcrypt cryptosystems, which allows new instances of the systems with guaranteed low DFR to be designed. Such a characterization is crucial to withstand recent attacks exploiting the reactions of the legitimate recipient upon decrypting multiple ciphertexts with the same private key, and consequentially it is able to ensure a lifecycle of the corresponding key pairs which can be sufficient for the wide majority of practical purposes.

LEDAcrypt: QC-LDPC Code-Based Cryptosystems with Bounded Decryption Failure Rate

A. Barenghi;G. Pelosi;
2019-01-01

Abstract

We consider the QC-LDPC code-based cryptosystems named LEDAcrypt, which are under consideration by NIST for the second round of the post-quantum cryptography standardization initiative. LEDAcrypt is the result of the merger of the key encapsulation mechanism LEDAkem and the public-key cryptosystem LEDApkc, which were submitted to the first round of the same competition. We provide a detailed quantification of the quantum and classical computational efforts needed to foil the cryptographic guarantees of these systems. To this end, we take into account the best known attacks that can be mounted against them employing both classical and quantum computers, and compare their computational complexities with the ones required to break AES, coherently with the NIST requirements. Assuming the original LEDAkem and LEDApkc parameters as a reference, we introduce an algorithmic optimization procedure to design new sets of parameters for LEDAcrypt. These novel sets match the security levels in the NIST call and make the C reference implementation of the systems exhibit significantly improved figures of merit, in terms of both running times and key sizes. As a further contribution, we develop a theoretical characterization of the decryption failure rate (DFR) of LEDAcrypt cryptosystems, which allows new instances of the systems with guaranteed low DFR to be designed. Such a characterization is crucial to withstand recent attacks exploiting the reactions of the legitimate recipient upon decrypting multiple ciphertexts with the same private key, and consequentially it is able to ensure a lifecycle of the corresponding key pairs which can be sufficient for the wide majority of practical purposes.
2019
Code-Based Cryptography. 7th International Workshop, CBC 2019, Darmstadt, Germany, May 18–19, 2019, Revised Selected Papers
978-3-030-25921-1
978-3-030-25922-8
File in questo prodotto:
File Dimensione Formato  
paper_bbcps_cbc2019.pdf

accesso aperto

Descrizione: main article
: Pre-Print (o Pre-Refereeing)
Dimensione 776.87 kB
Formato Adobe PDF
776.87 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1113938
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 6
social impact