Navigation satellites are known from numerical studies to reside in a dynamically sensitive environment, which may be of profound importance for their long-term sustainability. We derive the fundamental Hamiltonian of Global Navigation Satellite System dynamics and show analytically that near-circular trajectories lie in the neighborhood of a Normally Hyperbolic Invariant Manifold (NHIM), which is the primary source of hyperbolicity. Quasicircular orbits escape through chaotic transport, regulated by NHIM's stable and unstable manifolds, following a power-law escape time distribution P (t) ∼ t - α, with α ∼ 0.8 - 1.5. Our study is highly relevant for the design of satellite disposal trajectories, using manifold dynamics.
Chaotic transport of navigation satellites
Gkolias I.;
2019-01-01
Abstract
Navigation satellites are known from numerical studies to reside in a dynamically sensitive environment, which may be of profound importance for their long-term sustainability. We derive the fundamental Hamiltonian of Global Navigation Satellite System dynamics and show analytically that near-circular trajectories lie in the neighborhood of a Normally Hyperbolic Invariant Manifold (NHIM), which is the primary source of hyperbolicity. Quasicircular orbits escape through chaotic transport, regulated by NHIM's stable and unstable manifolds, following a power-law escape time distribution P (t) ∼ t - α, with α ∼ 0.8 - 1.5. Our study is highly relevant for the design of satellite disposal trajectories, using manifold dynamics.File | Dimensione | Formato | |
---|---|---|---|
GKOLI03-19.pdf
Accesso riservato
Descrizione: Paper
:
Publisher’s version
Dimensione
5.64 MB
Formato
Adobe PDF
|
5.64 MB | Adobe PDF | Visualizza/Apri |
GKOLI_OA_03-19.pdf
Open Access dal 18/10/2019
Descrizione: Paper open access
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
2.86 MB
Formato
Adobe PDF
|
2.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.