Learning under concept drift is a novel and promising research area aiming at designing learning algorithms able to deal with nonstationary data-generating processes. In this research field, most of the literature focuses on learning nonstationary probabilistic frameworks, while some extensions about learning graphs and signals under concept drift exist. For the first time in the literature, this paper addresses the problem of learning discrete-time Markov chains (DTMCs) under concept drift. More specifically, following a hybrid active/passive approach, this paper introduces both a family of change-detection mechanisms (CDMs), differing in the required assumptions and performance, for detecting changes in DTMCs and an adaptive learning algorithm able to deal with DTMCs under concept drift. The effectiveness of both the proposed CDMs and the adaptive learning algorithm has been extensively tested on synthetically generated experiments and real data sets.

Learning Discrete-Time Markov Chains Under Concept Drift

Roveri M.
2019-01-01

Abstract

Learning under concept drift is a novel and promising research area aiming at designing learning algorithms able to deal with nonstationary data-generating processes. In this research field, most of the literature focuses on learning nonstationary probabilistic frameworks, while some extensions about learning graphs and signals under concept drift exist. For the first time in the literature, this paper addresses the problem of learning discrete-time Markov chains (DTMCs) under concept drift. More specifically, following a hybrid active/passive approach, this paper introduces both a family of change-detection mechanisms (CDMs), differing in the required assumptions and performance, for detecting changes in DTMCs and an adaptive learning algorithm able to deal with DTMCs under concept drift. The effectiveness of both the proposed CDMs and the adaptive learning algorithm has been extensively tested on synthetically generated experiments and real data sets.
Adaptation; change-detection mechanisms (CDMs); concept drift; discrete-time Markov chains (DTMCs); learning in nonstationary environments
File in questo prodotto:
File Dimensione Formato  
FINAL VERSION.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 556.83 kB
Formato Adobe PDF
556.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1113395
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 5
social impact