Matrix-matrix multiplication is a key computational kernel for numerous applications in science and engineering, with ample parallelism and data locality that lends itself well to high-performance implementations. Many matrix multiplication-dependent applications can use reduced-precision integer or fixed-point representations to increase their performance and energy efficiency while still offering adequate quality of results. However, precision requirements may vary between different application phases or depend on input data, rendering constant-precision solutions ineffective. BISMO, a vectorized bit-serial matrix multiplication overlay for reconfigurable computing, previously utilized the excellent binary-operation performance of FPGAs to offer a matrix multiplication performance that scales with required precision and parallelism. We show how BISMO can be scaled up on Xilinx FPGAs using an arithmetic architecture that better utilizes six-input LUTs. The improved BISMO achieves a peak performance of 15.4 binary TOPS on the Ultra96 board with a Xilinx UltraScale+ MPSoC.

Optimizing Bit-Serial Matrix Multiplication for Reconfigurable Computing

Conficconi, Davide;
2019-01-01

Abstract

Matrix-matrix multiplication is a key computational kernel for numerous applications in science and engineering, with ample parallelism and data locality that lends itself well to high-performance implementations. Many matrix multiplication-dependent applications can use reduced-precision integer or fixed-point representations to increase their performance and energy efficiency while still offering adequate quality of results. However, precision requirements may vary between different application phases or depend on input data, rendering constant-precision solutions ineffective. BISMO, a vectorized bit-serial matrix multiplication overlay for reconfigurable computing, previously utilized the excellent binary-operation performance of FPGAs to offer a matrix multiplication performance that scales with required precision and parallelism. We show how BISMO can be scaled up on Xilinx FPGAs using an arithmetic architecture that better utilizes six-input LUTs. The improved BISMO achieves a peak performance of 15.4 binary TOPS on the Ultra96 board with a Xilinx UltraScale+ MPSoC.
2019
Pipeline computing, Hardwareaccelerators, Bit serial, matrix multiplication, overlay, FPGA
File in questo prodotto:
File Dimensione Formato  
1901.00370.pdf

Accesso riservato

: Pre-Print (o Pre-Refereeing)
Dimensione 954.42 kB
Formato Adobe PDF
954.42 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1107414
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 7
social impact