This paper considers the cooperation control problem for a team of dynamically decoupled agents with resource constraints. A codesign of self-triggered mechanism and distributed model predictive control (DMPC) is proposed to achieve the cooperative objectives while efficiently exploiting communication network. The proposed self-triggered DMPC (ST-DMPC) possesses three important features. First, the communication cost is explicitly incorporated in the cost function. In this way, the triggering instant and control inputs are simultaneously optimized, and a desired tradeoff between control performance and communication cost is achieved. Second, at triggering instants, the first element of the optimal control input sequence along with the current state instead of the whole trajectory is broadcast to neighbors for cooperation, which further reduces communication load. Third, sufficient conditions on design parameters related to predictive states of neighbor agents are constructed to ensure stability of the overall system. The application of the proposed ST-DMPC to four robot manipulators validates the effectiveness of this method.
Self-Triggered DMPC Design for Cooperative Multiagent Systems
Karimi, Hamid Reza
2020-01-01
Abstract
This paper considers the cooperation control problem for a team of dynamically decoupled agents with resource constraints. A codesign of self-triggered mechanism and distributed model predictive control (DMPC) is proposed to achieve the cooperative objectives while efficiently exploiting communication network. The proposed self-triggered DMPC (ST-DMPC) possesses three important features. First, the communication cost is explicitly incorporated in the cost function. In this way, the triggering instant and control inputs are simultaneously optimized, and a desired tradeoff between control performance and communication cost is achieved. Second, at triggering instants, the first element of the optimal control input sequence along with the current state instead of the whole trajectory is broadcast to neighbors for cooperation, which further reduces communication load. Third, sufficient conditions on design parameters related to predictive states of neighbor agents are constructed to ensure stability of the overall system. The application of the proposed ST-DMPC to four robot manipulators validates the effectiveness of this method.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.