Smart energy meters generate real time, high frequency data which can foster demand management and response of consumers and firms, with potential private and social benefits. However, proper statistical techniques are needed to make sense of this large amount of data and translate them into usable recommendations. Here, we apply Functional Data Analysis (FDA), a novel branch of Statistics that analyses functions—to identify drivers of residential electricity load curves. We evaluate a real time feedback intervention which involved about 1000 Italian households for a period of three years. Results of the FDA modelling reveal, for the first time, daytime-indexed patterns of residential electricity consumption which depend on the ownership of specific clusters of electrical appliances and an overall reduction of consumption after the introduction of real time feedback, unrelated to appliance ownership characteristics.

Functional Data Analysis of high-frequency load curves reveals drivers of residential electricity consumption

Fontana, Matteo;Tavoni, Massimo;Vantini, Simone
2019-01-01

Abstract

Smart energy meters generate real time, high frequency data which can foster demand management and response of consumers and firms, with potential private and social benefits. However, proper statistical techniques are needed to make sense of this large amount of data and translate them into usable recommendations. Here, we apply Functional Data Analysis (FDA), a novel branch of Statistics that analyses functions—to identify drivers of residential electricity load curves. We evaluate a real time feedback intervention which involved about 1000 Italian households for a period of three years. Results of the FDA modelling reveal, for the first time, daytime-indexed patterns of residential electricity consumption which depend on the ownership of specific clusters of electrical appliances and an overall reduction of consumption after the introduction of real time feedback, unrelated to appliance ownership characteristics.
2019
Electricity, Alternative Energy, Demand Curves, Functional Data Analysis, Curve Fitting, Hierarchical Clustering, Software Tools, Interval-Wise Testing, Functional Linear Models
File in questo prodotto:
File Dimensione Formato  
journal.pone.0218702.pdf

accesso aperto

Descrizione: Articolo Principale
: Publisher’s version
Dimensione 3.88 MB
Formato Adobe PDF
3.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1102917
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact