BACKGROUND: We systematically analyzed the synergistic effect of: (i) cytokine-mediated inflammatory activation of endothelial cells (ECs) with and (ii) shear-mediated platelet activation (SMPA) as a potential contributory mechanism to intraventricular thrombus formation in the setting of left ventricular assist device (LVAD) support. METHODS: Intact and shear-activated human platelets were exposed to non-activated and cytokine-activated ECs. To modulate the level of LVAD-related shear activation, platelets were exposed to shear stress patterns of varying magnitude (30, 50, and 70 dynes/cm2, 10 minutes) via a hemodynamic shearing device. ECs were activated via exposure to inflammatory tumor necrosis factor-α (TNF-α 10 and 100 ng/ml, 24 hours), consistent with inflammatory activation recorded in patients on LVAD circulatory support. RESULTS: Adhesivity of shear-activated platelets to ECs was significantly higher than that of intact/unactivated platelets, regardless of the initial activation level (70 dynes/cm2 shear-activated platelets vs intact platelets: +80%, p < 0.001). Importantly, inflammatory activation of ECs amplified platelet prothrombinase activity progressively with increasing shear stress magnitude and TNF-α concentration: thrombin generation of 70 dynes/cm2 shear-activated platelets was 2.6-fold higher after exposure and adhesion to 100 ng/ml TNF-α‒activated ECs (p < 0.0001). CONCLUSIONS: We demonstrated synergistic effect of SMPA and cytokine-mediated EC inflammatory activation to enhance EC‒platelet adhesion and platelet prothrombotic function. These mechanisms may contribute to intraventricular thrombosis in the setting of mechanical circulatory support.

Prothrombotic activity of cytokine-activated endothelial cells and shear-activated platelets in the setting of ventricular assist device support

Bono N.;Fiore G. B.;PAPPALARDO, FABIO;Candiani G.;Redaelli A.;
2019

Abstract

BACKGROUND: We systematically analyzed the synergistic effect of: (i) cytokine-mediated inflammatory activation of endothelial cells (ECs) with and (ii) shear-mediated platelet activation (SMPA) as a potential contributory mechanism to intraventricular thrombus formation in the setting of left ventricular assist device (LVAD) support. METHODS: Intact and shear-activated human platelets were exposed to non-activated and cytokine-activated ECs. To modulate the level of LVAD-related shear activation, platelets were exposed to shear stress patterns of varying magnitude (30, 50, and 70 dynes/cm2, 10 minutes) via a hemodynamic shearing device. ECs were activated via exposure to inflammatory tumor necrosis factor-α (TNF-α 10 and 100 ng/ml, 24 hours), consistent with inflammatory activation recorded in patients on LVAD circulatory support. RESULTS: Adhesivity of shear-activated platelets to ECs was significantly higher than that of intact/unactivated platelets, regardless of the initial activation level (70 dynes/cm2 shear-activated platelets vs intact platelets: +80%, p < 0.001). Importantly, inflammatory activation of ECs amplified platelet prothrombinase activity progressively with increasing shear stress magnitude and TNF-α concentration: thrombin generation of 70 dynes/cm2 shear-activated platelets was 2.6-fold higher after exposure and adhesion to 100 ng/ml TNF-α‒activated ECs (p < 0.0001). CONCLUSIONS: We demonstrated synergistic effect of SMPA and cytokine-mediated EC inflammatory activation to enhance EC‒platelet adhesion and platelet prothrombotic function. These mechanisms may contribute to intraventricular thrombosis in the setting of mechanical circulatory support.
THE JOURNAL OF HEART AND LUNG TRANSPLANTATION
Endothelial cells; inflammation; platelets; shear stress; thrombosis; ventricular assist device
File in questo prodotto:
File Dimensione Formato  
10.1016@j.healun.2019.02.009.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 992.75 kB
Formato Adobe PDF
992.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1097788
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact