We consider a fictitious domain formulation of an elliptic partial differential equation and approximate the resulting saddle-point system using a nested inexact preconditioned Uzawa iterative algorithm, which consists of three nested loops. In the outer loop the trial space for the Galerkin approximation of the Lagrange multiplier is enlarged. The intermediate loop solves this Galerkin system by a damped preconditioned Richardson iteration. Each iteration of the latter involves solving an elliptic problem on the fictitious domain whose solution is approximated by an adaptive finite element method in the inner loop. We prove that the overall method converges with the best possible rate and illustrate numerically our theoretical findings.
An optimal adaptive fictitious domain method
Berrone S.;Verani M.
2019-01-01
Abstract
We consider a fictitious domain formulation of an elliptic partial differential equation and approximate the resulting saddle-point system using a nested inexact preconditioned Uzawa iterative algorithm, which consists of three nested loops. In the outer loop the trial space for the Galerkin approximation of the Lagrange multiplier is enlarged. The intermediate loop solves this Galerkin system by a damped preconditioned Richardson iteration. Each iteration of the latter involves solving an elliptic problem on the fictitious domain whose solution is approximated by an adaptive finite element method in the inner loop. We prove that the overall method converges with the best possible rate and illustrate numerically our theoretical findings.File | Dimensione | Formato | |
---|---|---|---|
2019-Bonito-Berrone-Stevenson-Verani-MATHCOMP.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.8 MB
Formato
Adobe PDF
|
1.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.