We consider a fleet of electric freight vehicles (EFVs) that must deliver goods to a set of customers over the course of multiple days. In an urban environment, EFVs are typically charged at a central depot and rarely use public charging stations during delivery routes. Therefore, the charging schedule at the depot must be planned ahead of time so as to allow the vehicles to complete their routes at minimal cost. Vehicle fleet operators are subject to commercial electricity rate plans, which should be accounted for in order to provide an accurate estimation of the energy-related costs and restrictions. In addition, high vehicle utilization rates can accelerate battery aging, thereby requiring degradation mitigation considerations. We develop and solve a comprehensive mathematical model that incorporates a large variety of features associated with the use of EFVs. These include a realistic charging process, time-dependent energy costs, battery degradation, grid restrictions, and facility-related demand charges. Extensive numerical experiments are conducted in order to draw managerial insights regarding the impact of such features on the charging schedules of EFVs.

Charge scheduling for electric freight vehicles

Jabali, Ola;
2018-01-01

Abstract

We consider a fleet of electric freight vehicles (EFVs) that must deliver goods to a set of customers over the course of multiple days. In an urban environment, EFVs are typically charged at a central depot and rarely use public charging stations during delivery routes. Therefore, the charging schedule at the depot must be planned ahead of time so as to allow the vehicles to complete their routes at minimal cost. Vehicle fleet operators are subject to commercial electricity rate plans, which should be accounted for in order to provide an accurate estimation of the energy-related costs and restrictions. In addition, high vehicle utilization rates can accelerate battery aging, thereby requiring degradation mitigation considerations. We develop and solve a comprehensive mathematical model that incorporates a large variety of features associated with the use of EFVs. These include a realistic charging process, time-dependent energy costs, battery degradation, grid restrictions, and facility-related demand charges. Extensive numerical experiments are conducted in order to draw managerial insights regarding the impact of such features on the charging schedules of EFVs.
2018
Battery degradation; Charge scheduling; City logistics; Electric freight vehicles; Green transportation; Civil and Structural Engineering; Transportation
File in questo prodotto:
File Dimensione Formato  
paper4.pdf

Accesso riservato

Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF   Visualizza/Apri
11311-1087461 Jabali.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 611.42 kB
Formato Adobe PDF
611.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1087461
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 71
social impact