This paper examines the feasibility of using data from OpenStreetMap (OSM), Facebook and Foursquare as a source of information on the function of buildings. Such information is rarely openly available and if available, would vary between cities by nomenclature, making comparisons between places difficult. Volunteered Geographic Information (VGI) including data from social media represents new potential sources of building function data that have not yet been exploited for this purpose. Using a part of the city of Milan as the study area, building data from OSM and points of interest (POIs) from OSM, Facebook and Foursquare were extracted to derive the building function. This resulted in the classification of building function for more than 80% of the buildings and demonstrated that both Facebook and Foursquare can complement the building function derived from OSM, helping to fill in missing gaps. This preliminary study has demonstrated the potential of this approach for deriving building function information from open data in a simple way yet still requires independent validation with alternative sources as well as extension to other areas that have different amounts of OSM and social media coverage.

Classification of building function using available sources of VGI

Minghini, M.;
2018-01-01

Abstract

This paper examines the feasibility of using data from OpenStreetMap (OSM), Facebook and Foursquare as a source of information on the function of buildings. Such information is rarely openly available and if available, would vary between cities by nomenclature, making comparisons between places difficult. Volunteered Geographic Information (VGI) including data from social media represents new potential sources of building function data that have not yet been exploited for this purpose. Using a part of the city of Milan as the study area, building data from OSM and points of interest (POIs) from OSM, Facebook and Foursquare were extracted to derive the building function. This resulted in the classification of building function for more than 80% of the buildings and demonstrated that both Facebook and Foursquare can complement the building function derived from OSM, helping to fill in missing gaps. This preliminary study has demonstrated the potential of this approach for deriving building function information from open data in a simple way yet still requires independent validation with alternative sources as well as extension to other areas that have different amounts of OSM and social media coverage.
2018
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
Automated classification; Building function; Facebook; Foursquare; OpenStreetMap; Volunteered geographic information
File in questo prodotto:
File Dimensione Formato  
isprs-archives-XLII-4-209-2018.pdf

accesso aperto

Descrizione: versione pubblicata
: Publisher’s version
Dimensione 8.7 MB
Formato Adobe PDF
8.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1087129
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact