Autonomous drones represent a new breed of mobile computing system. Compared to smartphones and connected cars that only opportunistically sense or communicate, drones allow motion control to become part of the application logic. The efficiency of their movements is largely dictated by the low-level control enabling their autonomous operation based on high-level inputs. Existing implementations of such low-level control operate in a timetriggered fashion. In contrast, we conceive a notion of reactive control that allows drones to execute the low-level control logic only upon recognizing the need to, based on the influence of the environment onto the drone operation. As a result, reactive control can dynamically adapt the control rate. This brings fundamental benefits, including more accurate motion control, extended lifetime, and better quality of service in end-user applications. Based on 260+ hours of real-world experiments using three aerial drones, three different control logic, and three hardware platforms, we demonstrate, for example, up to 41% improvements in motion accuracy and up to 22% improvements in flight time.

Fundamental concepts of reactive control for autonomous drones

Mottola, Luca;
2018-01-01

Abstract

Autonomous drones represent a new breed of mobile computing system. Compared to smartphones and connected cars that only opportunistically sense or communicate, drones allow motion control to become part of the application logic. The efficiency of their movements is largely dictated by the low-level control enabling their autonomous operation based on high-level inputs. Existing implementations of such low-level control operate in a timetriggered fashion. In contrast, we conceive a notion of reactive control that allows drones to execute the low-level control logic only upon recognizing the need to, based on the influence of the environment onto the drone operation. As a result, reactive control can dynamically adapt the control rate. This brings fundamental benefits, including more accurate motion control, extended lifetime, and better quality of service in end-user applications. Based on 260+ hours of real-world experiments using three aerial drones, three different control logic, and three hardware platforms, we demonstrate, for example, up to 41% improvements in motion accuracy and up to 22% improvements in flight time.
2018
File in questo prodotto:
File Dimensione Formato  
paper.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.24 MB
Formato Adobe PDF
3.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1087089
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact