Soil morphology plays a fundamental role in the vertical and lateral movements of solutes and water transport, providing knowledge regarding spatial distribution of its textural properties and subsurface dynamics. In this framework, the measured values of electrical conductivity are able to reveal the heterogeneity of soil that is present in a particular agricultural field and they are affected by more than one important physical characteristic: soil texture, organic matter, moisture content, and the depth of the clay pan. In the microwave region, these dynamics are known to exhibit a frequency dependent behaviour. This study explores the application of a Step Frequency Continuous Wave Ground Penetrating Radar (SFCW GPR) to shed light on the practical impact that these dependencies have on the imaging results, not only regarding the electrical characterisation of the subsurface morphology, but also in its correct interpretation. This information is of notable importance for determining water-use efficiency and planning precision-agriculture programs. The results clearly show visible and significant fluctuations of the amplitude levels, depending on the considered central frequency, demonstrating that the frequency dependence of electromagnetic properties of heterogeneous soil are significant and cannot be ignored if the aim is to properly define the subsurface attributes. The measurements also suggest that correlating the delineated variations might help in the identification of extended features and the classification of areas that possess similar properties in order to increase the confidence in monitoring soil resources.

Step-Frequency Ground Penetrating Radar for Agricultural Soil Morphology Characterisation

Lombardi, Federico;Lualdi, Maurizio
2019-01-01

Abstract

Soil morphology plays a fundamental role in the vertical and lateral movements of solutes and water transport, providing knowledge regarding spatial distribution of its textural properties and subsurface dynamics. In this framework, the measured values of electrical conductivity are able to reveal the heterogeneity of soil that is present in a particular agricultural field and they are affected by more than one important physical characteristic: soil texture, organic matter, moisture content, and the depth of the clay pan. In the microwave region, these dynamics are known to exhibit a frequency dependent behaviour. This study explores the application of a Step Frequency Continuous Wave Ground Penetrating Radar (SFCW GPR) to shed light on the practical impact that these dependencies have on the imaging results, not only regarding the electrical characterisation of the subsurface morphology, but also in its correct interpretation. This information is of notable importance for determining water-use efficiency and planning precision-agriculture programs. The results clearly show visible and significant fluctuations of the amplitude levels, depending on the considered central frequency, demonstrating that the frequency dependence of electromagnetic properties of heterogeneous soil are significant and cannot be ignored if the aim is to properly define the subsurface attributes. The measurements also suggest that correlating the delineated variations might help in the identification of extended features and the classification of areas that possess similar properties in order to increase the confidence in monitoring soil resources.
2019
Step-Frequency Ground Penetrating Radar; Precision agriculture; Soil electromagnetic properties; soil characterisation; GPR frequency dependency effects
File in questo prodotto:
File Dimensione Formato  
remotesensing-11-01075_P.pdf

accesso aperto

: Publisher’s version
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1086402
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 11
social impact