We consider a fractional elliptic equation in an unbounded set with both Dirichlet and fractional normal derivative datum prescribed. We prove that the domain and the solution are necessarily radially symmetric. We also study the extension of the result in bounded non-convex regions, as well as the radial symmetry of the solution when the set is assumed a priori to be rotationally symmetric.
Titolo: | Overdetermined problems for the fractional Laplacian in exterior and annular sets | |
Autori: | ||
Data di pubblicazione: | 2019 | |
Rivista: | ||
Handle: | http://hdl.handle.net/11311/1085545 | |
Appare nelle tipologie: | 01.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
11311-1085545_Soave.pdf | Post-Print (DRAFT o Author’s Accepted Manuscript-AAM) | Accesso apertoVisualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.