In this paper, a multi-objective optimization model is proposed to obtain the optimized configuration of interconnected distributed energy resource (DER) systems in a local energy community (LEC), while considering economic and environmental aspects. The objective is the optimal selection and sizing of DER with corresponding operation strategies, and the optimal configuration of the heating pipeline network, which allows the heat exchange among the DER systems. The economic objective is to minimize the total annual cost, whereas the environmental objective is to minimize the total annual CO2emissions. The Pareto frontier is found through the weighted-sum method, by using branch-and-cut. Numerical results show that the design method allows identifying different configurations of the interconnected DER systems and heating pipeline network on the Pareto frontier, thereby providing trade-off options to planners for economic/environmental sustainability of the LEC. Moreover, the total annual cost and emissions of the LEC with the optimized configurations are significantly reduced as compared with the conventional energy supply scenario.
Optimal Design of der for Economic/Environmental Sustainability of Local Energy Communities
Foiadelli, Federica;
2018-01-01
Abstract
In this paper, a multi-objective optimization model is proposed to obtain the optimized configuration of interconnected distributed energy resource (DER) systems in a local energy community (LEC), while considering economic and environmental aspects. The objective is the optimal selection and sizing of DER with corresponding operation strategies, and the optimal configuration of the heating pipeline network, which allows the heat exchange among the DER systems. The economic objective is to minimize the total annual cost, whereas the environmental objective is to minimize the total annual CO2emissions. The Pareto frontier is found through the weighted-sum method, by using branch-and-cut. Numerical results show that the design method allows identifying different configurations of the interconnected DER systems and heating pipeline network on the Pareto frontier, thereby providing trade-off options to planners for economic/environmental sustainability of the LEC. Moreover, the total annual cost and emissions of the LEC with the optimized configurations are significantly reduced as compared with the conventional energy supply scenario.File | Dimensione | Formato | |
---|---|---|---|
08493898.pdf
Accesso riservato
:
Publisher’s version
Dimensione
815.73 kB
Formato
Adobe PDF
|
815.73 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.