This paper presents the statistical power estimation of goodness-of-fit tests for Extreme Value Theory (EVT) distributions. The presented dataset provides quantitative information on the statistical power, in order to enable the sample size selection in external validation scenario. In particular, high precision estimations of the statistical power of KS, AD, and MAD goodness-of-fit tests have been computed using a Monte Carlo approach. The full raw dataset resulting from this analysis has been published as reference for future studies: https://doi.org/10.17632/hh2byrbbmf.1

Statistical Power Estimation Dataset for External Validation GoF tests on EVT distribution

Federico Reghenzani;Giuseppe Massari;William Fornaciari
2019-01-01

Abstract

This paper presents the statistical power estimation of goodness-of-fit tests for Extreme Value Theory (EVT) distributions. The presented dataset provides quantitative information on the statistical power, in order to enable the sample size selection in external validation scenario. In particular, high precision estimations of the statistical power of KS, AD, and MAD goodness-of-fit tests have been computed using a Monte Carlo approach. The full raw dataset resulting from this analysis has been published as reference for future studies: https://doi.org/10.17632/hh2byrbbmf.1
2019
statistical power, extreme value theory, probabilistic real-time
File in questo prodotto:
File Dimensione Formato  
DiB_Statistical_Power-pre.pdf

accesso aperto

Descrizione: Accepted Version
: Pre-Print (o Pre-Refereeing)
Dimensione 548.68 kB
Formato Adobe PDF
548.68 kB Adobe PDF Visualizza/Apri
1-s2.0-S2352340919304251-main.pdf

accesso aperto

Descrizione: Publisher Version
: Publisher’s version
Dimensione 672.59 kB
Formato Adobe PDF
672.59 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1085388
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact