This paper presents the statistical power estimation of goodness-of-fit tests for Extreme Value Theory (EVT) distributions. The presented dataset provides quantitative information on the statistical power, in order to enable the sample size selection in external validation scenario. In particular, high precision estimations of the statistical power of KS, AD, and MAD goodness-of-fit tests have been computed using a Monte Carlo approach. The full raw dataset resulting from this analysis has been published as reference for future studies: https://doi.org/10.17632/hh2byrbbmf.1
Statistical Power Estimation Dataset for External Validation GoF tests on EVT distribution
Federico Reghenzani;Giuseppe Massari;William Fornaciari
2019-01-01
Abstract
This paper presents the statistical power estimation of goodness-of-fit tests for Extreme Value Theory (EVT) distributions. The presented dataset provides quantitative information on the statistical power, in order to enable the sample size selection in external validation scenario. In particular, high precision estimations of the statistical power of KS, AD, and MAD goodness-of-fit tests have been computed using a Monte Carlo approach. The full raw dataset resulting from this analysis has been published as reference for future studies: https://doi.org/10.17632/hh2byrbbmf.1File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DiB_Statistical_Power-pre.pdf
accesso aperto
Descrizione: Accepted Version
:
Pre-Print (o Pre-Refereeing)
Dimensione
548.68 kB
Formato
Adobe PDF
|
548.68 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S2352340919304251-main.pdf
accesso aperto
Descrizione: Publisher Version
:
Publisher’s version
Dimensione
672.59 kB
Formato
Adobe PDF
|
672.59 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.