Fibre reinforced concrete shows enhanced performance in statistically redundant bi-dimensional structural elements that undergo biaxial bending. However, the lack of reinforcing rebars in fibre reinforced structural elements may affect the structural ductility which may further affect the overall load bearing capacity of these structures. To investigate the influence of fibres in such elements, six concrete plates of 2000 × 2000 × 150 mm reinforced with steel fibres and/or reinforcing rebars are tested under a central concentrated load. Two of the elements are reinforced with only 35 kg/m 3 of steel fibres, two are reinforced with 2-way conventional reinforcing rebars (35 kg/m 3 , in each direction) and two are reinforced with both steel fibres and rebars. The specimens are simply supported at the middle of each side by means of a bilateral restraint; the deflection response and cracking behaviour of all the specimens are recorded and compared. Moreover, the methodology introduced in the fib Model Code 2010 for design of steel fibre reinforced concrete is implemented to predict the ultimate load bearing capacity of these elements and its reliability is determined in comparison with the experimental values. The comparison of the behaviour of the specimens reinforced only with steel fibres, with those reinforced with steel rebars, shows the higher efficiency of steel fibres in terms of load carrying capacity, but with a lower ductility. The combination of steel fibres and rebars allows for a better exploitation of the capacity of both reinforcement solutions. Finally, the reliability of the approach implemented for the ultimate load prediction is shown and the need of rebars in providing ductility in fibre reinforced concrete members is underlined.

Biaxial bending of SFRC slabs: Is conventional reinforcement necessary?

di Prisco, Marco;Colombo, Matteo;POURZARABI, ALI
2019-01-01

Abstract

Fibre reinforced concrete shows enhanced performance in statistically redundant bi-dimensional structural elements that undergo biaxial bending. However, the lack of reinforcing rebars in fibre reinforced structural elements may affect the structural ductility which may further affect the overall load bearing capacity of these structures. To investigate the influence of fibres in such elements, six concrete plates of 2000 × 2000 × 150 mm reinforced with steel fibres and/or reinforcing rebars are tested under a central concentrated load. Two of the elements are reinforced with only 35 kg/m 3 of steel fibres, two are reinforced with 2-way conventional reinforcing rebars (35 kg/m 3 , in each direction) and two are reinforced with both steel fibres and rebars. The specimens are simply supported at the middle of each side by means of a bilateral restraint; the deflection response and cracking behaviour of all the specimens are recorded and compared. Moreover, the methodology introduced in the fib Model Code 2010 for design of steel fibre reinforced concrete is implemented to predict the ultimate load bearing capacity of these elements and its reliability is determined in comparison with the experimental values. The comparison of the behaviour of the specimens reinforced only with steel fibres, with those reinforced with steel rebars, shows the higher efficiency of steel fibres in terms of load carrying capacity, but with a lower ductility. The combination of steel fibres and rebars allows for a better exploitation of the capacity of both reinforcement solutions. Finally, the reliability of the approach implemented for the ultimate load prediction is shown and the need of rebars in providing ductility in fibre reinforced concrete members is underlined.
2019
Biaxial bending; Ductility; Fibre reinforced concrete; Reinforcement efficiency; Serviceability and ultimate behaviour; Slabs; Civil and Structural Engineering; Building and Construction; Materials Science (all); Mechanics of Materials
File in questo prodotto:
File Dimensione Formato  
2018-11-28-SpecialPub_Matteo-Ali-Marco.pdf

accesso aperto

Descrizione: Articolo principale
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1085236
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 18
social impact