Additive manufacturing (AM) of metal offers matchless design sovereignty to manufacture metallic microcomponents from a wide range of materials. Green-state micromilling is a promising method that can be integrated into the AM of metallic feedstock microcomponents in typical extrusion-based AM methods for compensating the inability to generate microfeatures. The integration enables the manufacturing of complex geometries, the generation of good surface quality, and can provide exceptional flexibility to new product shapes. This work is a micromachinability study of AISI316 L feedstock components produced by extrusion-based AM where the effects of workpiece temperature and the typical micromilling parameters such as cutting speed, feed per tooth, axial depth of cut, and air supply are studied. Edge integrity and surface roughness of the machined slots, as well as cutting forces, are analyzed using three-dimensional microscopy and piezoelectric force sensor, respectively. Green-state micromilling results were satisfying with good produced quality. The micromilling of heated workpieces (45 °C), with external air supply for debris removal, showed the best surface quality with surface roughness values that reached around Sa = 1.5 μm, much smaller than the average metal particles size. Minimum tendency to borders breakage was showed but in some cases microcutting was responsible of the generation of surface defects imputable to lack of adhesion of deposited layers. Despite this fact, the integrability of micromilling into extrusion-based AM cycles of metallic feedstock is confirmed.

Green-State Micromilling of Additive Manufactured AISI316 L

Kuriakose, Sandeep;Parenti, Paolo;Cataldo, Salvatore;Annoni, Massimiliano
2019

Abstract

Additive manufacturing (AM) of metal offers matchless design sovereignty to manufacture metallic microcomponents from a wide range of materials. Green-state micromilling is a promising method that can be integrated into the AM of metallic feedstock microcomponents in typical extrusion-based AM methods for compensating the inability to generate microfeatures. The integration enables the manufacturing of complex geometries, the generation of good surface quality, and can provide exceptional flexibility to new product shapes. This work is a micromachinability study of AISI316 L feedstock components produced by extrusion-based AM where the effects of workpiece temperature and the typical micromilling parameters such as cutting speed, feed per tooth, axial depth of cut, and air supply are studied. Edge integrity and surface roughness of the machined slots, as well as cutting forces, are analyzed using three-dimensional microscopy and piezoelectric force sensor, respectively. Green-state micromilling results were satisfying with good produced quality. The micromilling of heated workpieces (45 °C), with external air supply for debris removal, showed the best surface quality with surface roughness values that reached around Sa = 1.5 μm, much smaller than the average metal particles size. Minimum tendency to borders breakage was showed but in some cases microcutting was responsible of the generation of surface defects imputable to lack of adhesion of deposited layers. Despite this fact, the integrability of micromilling into extrusion-based AM cycles of metallic feedstock is confirmed.
3D printing; additive manufacturing; extrusion; feedstock; Micromilling; surface quality; Mechanics of Materials; Process Chemistry and Technology; Industrial and Manufacturing Engineering
File in questo prodotto:
File Dimensione Formato  
Green-State Micromilling of Additive Manufactured AISI316 L.pdf

Accesso riservato

: Publisher’s version
Dimensione 2.4 MB
Formato Adobe PDF
2.4 MB Adobe PDF   Visualizza/Apri
JMNM Green-state Micromilling of Additive Manufactured AISI316L for Publishing to polimi library.pdf

embargo fino al 11/04/2020

Descrizione: Accepted manuscript
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1084133
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact