Shale deposits are globally abundant and widespread. Extraction of shale oil and shale gas is generally performed through water-intensive hydraulic fracturing. Despite recent work on its environmental impacts, it remains unclear where and to what extent shale resource extraction could compete with other water needs. Here we consider the global distribution of known shale deposits suitable for oil and gas extraction and develop a water balance model to quantify their impacts on local water availability for other human uses and ecosystem functions. We find that 31–44% of the world's shale deposits are located in areas where water stress would either emerge or be exacerbated as a result of shale oil or gas extraction; 20% of shale deposits are in areas affected by groundwater depletion and 30% in irrigated land. In these regions shale oil and shale gas production would likely compete for local water resources with agriculture, environmental flows, and other water needs. By adopting a hydrologic perspective that considers water availability and demand together, decision makers and local communities can better understand the water and food security implications of shale resource development.

The Water-Energy Nexus of Hydraulic Fracturing: A Global Hydrologic Analysis for Shale Oil and Gas Extraction

Rulli, Maria Cristina;D'Odorico, Paolo
2018-01-01

Abstract

Shale deposits are globally abundant and widespread. Extraction of shale oil and shale gas is generally performed through water-intensive hydraulic fracturing. Despite recent work on its environmental impacts, it remains unclear where and to what extent shale resource extraction could compete with other water needs. Here we consider the global distribution of known shale deposits suitable for oil and gas extraction and develop a water balance model to quantify their impacts on local water availability for other human uses and ecosystem functions. We find that 31–44% of the world's shale deposits are located in areas where water stress would either emerge or be exacerbated as a result of shale oil or gas extraction; 20% of shale deposits are in areas affected by groundwater depletion and 30% in irrigated land. In these regions shale oil and shale gas production would likely compete for local water resources with agriculture, environmental flows, and other water needs. By adopting a hydrologic perspective that considers water availability and demand together, decision makers and local communities can better understand the water and food security implications of shale resource development.
2018
hydraulic fracturing; hydrology; sustainability; unconventional oil and gas; water-energy-food nexus; Earth and Planetary Sciences (miscellaneous); 2300
File in questo prodotto:
File Dimensione Formato  
2018_Rosa et al_Earth'sFuture2018.pdf

accesso aperto

: Publisher’s version
Dimensione 915.71 kB
Formato Adobe PDF
915.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1084121
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 52
social impact