This paper focuses on the use of ultra-high resolution Unmanned Aircraft Systems (UAS) imagery to classify tree species. Multispectral surveys were performed on a plant nursery to produce Digital Surface Models and orthophotos with ground sample distance equal to 0.01 m. Different combinations of multispectral images, multi-temporal data, and texture measures were employed to improve classification. The Grey Level Co-occurrence Matrix was used to generate texture images with different window sizes and procedures for optimal texture features and window size selection were investigated. The study evaluates how methods used in Remote Sensing could be applied on ultra-high resolution UAS images. Combinations of original and derived bands were classified with the Maximum Likelihood algorithm, and Principal Component Analysis was conducted in order to understand the correlation between bands. The study proves that the use of texture features produces a significant increase of the Overall Accuracy, whose values change from 58% to 78% or 87%, depending on components reduction. The improvement given by the introduction of texture measures is highlighted even in terms of User's and Producer's Accuracy. For classification purposes, the inclusion of texture can compensate for difficulties of performing multi-temporal surveys.

Improving tree species classification using UAS multispectral images and texture measures

Gini, Rossana;Sona, Giovanna;Ronchetti, Giulia;Passoni, Daniele;Pinto, Livio
2018

Abstract

This paper focuses on the use of ultra-high resolution Unmanned Aircraft Systems (UAS) imagery to classify tree species. Multispectral surveys were performed on a plant nursery to produce Digital Surface Models and orthophotos with ground sample distance equal to 0.01 m. Different combinations of multispectral images, multi-temporal data, and texture measures were employed to improve classification. The Grey Level Co-occurrence Matrix was used to generate texture images with different window sizes and procedures for optimal texture features and window size selection were investigated. The study evaluates how methods used in Remote Sensing could be applied on ultra-high resolution UAS images. Combinations of original and derived bands were classified with the Maximum Likelihood algorithm, and Principal Component Analysis was conducted in order to understand the correlation between bands. The study proves that the use of texture features produces a significant increase of the Overall Accuracy, whose values change from 58% to 78% or 87%, depending on components reduction. The improvement given by the introduction of texture measures is highlighted even in terms of User's and Producer's Accuracy. For classification purposes, the inclusion of texture can compensate for difficulties of performing multi-temporal surveys.
File in questo prodotto:
File Dimensione Formato  
ijgi-07-00315-v2.pdf

accesso aperto

: Publisher’s version
Dimensione 12.64 MB
Formato Adobe PDF
12.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1083686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 25
social impact